Your browser doesn't support javascript.
loading
Minor clone of del(17p) provides a reservoir for relapse in multiple myeloma.
Cui, Jian; Lv, Rui; Yu, Tengteng; Yan, Wenqiang; Xu, Jingyu; Fan, Huishou; Li, Lingna; Liu, Yuntong; Du, Chenxing; Deng, Shuhui; Sui, Weiwei; Xu, Yan; Yi, Shuhua; Zou, Dehui; Qiu, Lugui; An, Gang.
Afiliação
  • Cui J; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China; Tianjin Institut
  • Lv R; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China; Tianjin Institut
  • Yu T; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China; Tianjin Institut
  • Yan W; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China; Tianjin Institut
  • Xu J; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China; Tianjin Institut
  • Fan H; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China; Tianjin Institut
  • Li L; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China; Tianjin Institut
  • Liu Y; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China; Tianjin Institut
  • Du C; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China; Tianjin Institut
  • Deng S; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China; Tianjin Institut
  • Sui W; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China; Tianjin Institut
  • Xu Y; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China; Tianjin Institut
  • Yi S; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China; Tianjin Institut
  • Zou D; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China; Tianjin Institut
  • Qiu L; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China; Tianjin Institut
  • An G; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China; Tianjin Institut
Haematologica ; 109(2): 591-603, 2024 Feb 01.
Article em En | MEDLINE | ID: mdl-37534514
ABSTRACT
The deletion of chromosome 17p (del(17p)) is considered a crucial prognostic factor at the time of diagnosis in patients with multiple myeloma (MM). However, the impact of del(17p) on survival at different clonal sizes at relapse, as well as the patterns of clonal evolution between diagnosis and relapse and their prognostic value, has not been well described. To address these issues, we analyzed the interphase fluorescence in situ hybridization (iFISH) results of 995 newly diagnosed MM (NDMM) patients and 293 patients with MM at their first relapse. Among these patients, 197 had paired iFISH data at diagnosis and first relapse. Our analysis of paired iFISH revealed that a minor clone of del(17p) at relapse but not at diagnosis was associated with poor prognosis in MM (hazard ratio for median overall survival 1.64 vs. 1.44). Fifty-six and 12 patients developed one or more new cytogenetic abnormalities at relapse, mainly del(17p) and gain/amp(1q), respectively. We classified the patients into six groups based on the change patterns in the clonal size of del(17p) between the two time points. Patients who did not have del(17p) during follow-up showed the best outcomes, whereas those who acquired del(17p) during their disease course, experienced compromised survival (median overall survival 61.3 vs. 49.4 months; hazard ratio =1.64; 95% confidence interval 1.06-2.56; P<0.05). In conclusion, our data confirmed the adverse impact of a minor clone of del(17p) at relapse and highlighted the importance of designing optimal therapeutic strategies to eliminate high-risk cytogenetic abnormalities (clinicaltrials gov. identifier NCT04645199).
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mieloma Múltiplo Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Haematologica Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mieloma Múltiplo Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Haematologica Ano de publicação: 2024 Tipo de documento: Article