Your browser doesn't support javascript.
loading
Inulin ameliorates metabolic syndrome in high-fat diet-fed mice by regulating gut microbiota and bile acid excretion.
Huang, Shaoxiong; Dong, Shiliang; Lin, Lizhen; Ma, Qiming; Xu, Mengping; Ni, Limei; Fan, Qitong.
Afiliação
  • Huang S; Department of Gastrointestinal Surgery, Affiliated Hospital of Putian University, Putian, China.
  • Dong S; Department of Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
  • Lin L; Department of Anaesthesia, The First Hospital of Putian City, Putian, Fujian, China.
  • Ma Q; Department of Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
  • Xu M; The Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
  • Ni L; Department of General Practice, Affiliated Hospital of Putian University, Putian, China.
  • Fan Q; Department of Human Anatomy, Nanchang University Fuzhou Medical College, Fuzhou, China.
Front Pharmacol ; 14: 1226448, 2023.
Article em En | MEDLINE | ID: mdl-37554983
Background: Inulin is a natural plant extract that improves metabolic syndrome by modulating the gut microbiota. Changes in the gut microbiota may affect intestinal bile acids. We suggest that inulin may improve metabolism by inducing bile acid excretion by gut microbes. Methods: Male C57/BL mice were fed either a high-fat diet (60% calories) or a regular diet for 16 weeks, with oral inulin (10% w/w). At the end of the experiment, the gene expression levels (FGF15, CD36, Srebp-1c, FASN, and ACC) in the liver and intestines, as well as the serum levels of triglycerides (TGs), low-density lipoprotein (LDL) cholesterol, total cholesterol, and free fatty acids, were collected. The expression of FGF15 was examined using Western blot analysis. The fat distribution in the liver and groin was detected by oil red and hematoxylin and eosin staining. Simultaneously, the levels of serum inflammatory factors (alanine aminotransferase and aspartate aminotransferase) were detected to explore the side effects of inulin. Results: Inulin significantly improved glucose tolerance and insulin sensitivity, and decreased body weight and serum TG and LDL levels, in mice fed normal diet. Furthermore, inulin increased the α-diversity of the gut microbiota and increased the fecal bile acid and TG excretion in inulin-treated mice. In addition, inulin significantly reduced lipid accumulation in liver and inguinal fat, white fat weight, and hepatic steatosis. Western blot analysis showed that inulin reduced the expression of FGF15, a bile acid reabsorption protein. Conclusion: Inulin ameliorates the glucose and lipid metabolic phenotypes of mice fed a normal diet, including decreased intestinal lipid absorption, increased glucose tolerance, increased insulin sensitivity, and decreased body weight. These changes may be caused by an increase in bile acid excretion resulting from changes in the gut microbiota that affect intestinal lipid absorption.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Pharmacol Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Pharmacol Ano de publicação: 2023 Tipo de documento: Article