Your browser doesn't support javascript.
loading
Mycobacterial phage TM4 requires a eukaryotic-like Ser/Thr protein kinase to silence and escape anti-phage immunity.
Li, Xiaohui; Long, Xiating; Chen, Liu; Guo, Xiao; Lu, Lining; Hu, Lihua; He, Zheng-Guo.
Afiliação
  • Li X; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
  • Long X; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
  • Chen L; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
  • Guo X; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
  • Lu L; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
  • Hu L; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
  • He ZG; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China. Electronic address: hezhengguo2019@163.com.
Cell Host Microbe ; 31(9): 1469-1480.e4, 2023 09 13.
Article em En | MEDLINE | ID: mdl-37567169
ABSTRACT
In eukaryotic cells, serine/threonine protein kinases (StpKs) play important roles in limiting viral infections. StpKs are commonly activated upon infections, inhibiting the expression of genes central for viral replication. Here, we report that a eukaryotic-like StpK7 encoded by MSMEG_1200 in M. smegmatis is required for mycobacteriophage TM4 to escape bacterial defense. stpK7 is located within a gene island, MSMEG_1191-MSMEG_1200, containing multiple anti-phage genes resembling the BREX (bacteriophage exclusion) phage-resistance system. StpK7 negatively regulates the expression of this gene island. Following phage TM4 infection, StpK7 is induced, directly phosphorylating the transcriptional regulator MSMEG_1198 and inhibiting its positive regulatory activity, thus reducing the expression of multiple downstream genes in the BREX-like gene island. Further analysis showed that genes within this anti-phage island critically regulate mycobacterial lipid hemostasis and phage adsorption. Collectively, this work characterizes a regulatory network driven by StpK7, which is utilized by phage TM4 to escape from the host defense against mycobacteria.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bacteriófagos / Mycobacterium Idioma: En Revista: Cell Host Microbe Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bacteriófagos / Mycobacterium Idioma: En Revista: Cell Host Microbe Ano de publicação: 2023 Tipo de documento: Article