The cell-centered Finite-Volume self-consistent approach for heterostructures: 1D electron gas at the Si-SiO2interface.
J Phys Condens Matter
; 35(47)2023 Aug 29.
Article
em En
| MEDLINE
| ID: mdl-37567213
Achieving self-consistent convergence with the conventional effective-mass approach at ultra-low temperatures (below 4.2 K) is a challenging task, which mostly lies in the discontinuities in material properties (e.g. effective-mass, electron affinity, dielectric constant). In this article, we develop a novel self-consistent approach based on cell-centered finite-volume discretization of the Sturm-Liouville form of the effective-mass Schrödinger equation and generalized Poisson's equation (FV-SP). We apply this approach to simulate the one-dimensional electron gas formed at the Si-SiO2interface via a top gate. We find excellent self-consistent convergence from high to extremely low (as low as 50 mK) temperatures. We further examine the solidity of FV-SP method by changing external variables such as the electrochemical potential and the accumulative top gate voltage. Our approach allows for counting electron-electron interactions. Our results demonstrate that FV-SP approach is a powerful tool to solve effective-mass Hamiltonians.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Phys Condens Matter
Ano de publicação:
2023
Tipo de documento:
Article