Your browser doesn't support javascript.
loading
Fabrication of Hyperbranched Photomechanical Crystals Composed of a Photochromic Diarylethene.
Isobe, Mami; Kitagawa, Daichi; Kobatake, Seiya.
Afiliação
  • Isobe M; Department of Chemistry and Bioengineering, Graduate School of Engineering Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
  • Kitagawa D; Department of Chemistry and Bioengineering, Graduate School of Engineering Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
  • Kobatake S; Department of Chemistry and Bioengineering, Graduate School of Engineering Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
Chempluschem ; 88(12): e202300428, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37610166
We report the fabrication of hyperbranched hollow crystals of 1,2-bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene on a concave surface of the spherical glass substrate by sublimation and their practical photomechanical behaviors. The number of units of the branched structure of the hollow crystals composed of this compound is proportional to the substrate curvature of the substrate. Compared with the sublimation process of the same compound on the flat glass substrate, two kinds of the thin film domains are generated separately in the center and around the edge of the spherical glass substrate. Especially under the high relative humidity condition, the boundaries between these thin film domains move gradually around the edge through the center during as long as 6 h of sublimation time so that the hyperbranched hollow crystals are densely produced on the entire surface of the substrate. These hyperbranched hollow crystals can be prepared with the highly ordered molecular packing due to the very slow formation process of the crystalline walls of the hollow structures. Furthermore, the photo-induced bending behaviors in the few- and highly-branched hollow crystals have the practical roles in moving and bending the minute objects according to their characteristics of these branched shapes.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chempluschem Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chempluschem Ano de publicação: 2023 Tipo de documento: Article