Your browser doesn't support javascript.
loading
A Monolayer Carbon Nitride on Au(111) with a High Density of Single Co Sites.
Gammelgaard, Jens Jakob; Sun, Zhaozong; Vestergaard, Anders K; Zhao, Siqi; Li, Zheshen; Lock, Nina; Daasbjerg, Kim; Bagger, Alexander; Rossmeisl, Jan; Lauritsen, Jeppe V.
Afiliação
  • Gammelgaard JJ; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark.
  • Sun Z; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark.
  • Vestergaard AK; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark.
  • Zhao S; Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark.
  • Li Z; Novo Nordisk Foundation (NNF) CO2 Research Center, Aarhus University, 8000 Aarhus C, Denmark.
  • Lock N; Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
  • Daasbjerg K; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark.
  • Bagger A; Novo Nordisk Foundation (NNF) CO2 Research Center, Aarhus University, 8000 Aarhus C, Denmark.
  • Rossmeisl J; Department of Biological and Chemical Engineering, Aarhus University, 8200 Aarhus N, Denmark.
  • Lauritsen JV; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark.
ACS Nano ; 17(17): 17489-17498, 2023 Sep 12.
Article em En | MEDLINE | ID: mdl-37643209
ABSTRACT
Carbon nitrides that expose atomically dispersed single-atom metals in the form of M-N-C (M = metal) sites are attractive earth-abundant catalyst materials that have been demonstrated in electrocatalytic conversion reactions. The catalytic performance is determined by the abundance of N-doped sites and the type of metal coordination to N, but challenges remain to synthesize pristine carbon nitrides with a high concentration of the most active sites and prepare homogeneously doped materials that allow for in-depth characterization of the M-N-C sites and quantitative evaluation of their catalytic performance. Herein, we have synthesized and characterized a well-defined monolayer carbon nitride phase on a Au(111) surface that exposes an exceedingly high concentration of Co-N4 sites. The crystalline monolayer carbon nitride, whose formation is controlled by an on-surface reaction between Co atoms and melamine on Au(111), is characterized by a dense array of 4- and 6-fold N-terminated pockets, whereof only the 4-fold pocket is found to be holding Co atoms. Through detailed characterization using scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory modeling, we determine the atomic structure and chemical state of the carbon nitride network. Furthermore, we show that the monolayer carbon nitride structure is stable and reactive toward the electrocatalytic oxygen reduction reaction in alkaline electrolyte, with a quantitative performance metric that significantly exceeds comparable M-N-C-based catalyst types. The work demonstrates that high-density active catalytic sites can be created using common precursor materials, and the formed networks themselves offer an excellent platform for onward studies addressing the characteristics of M-N-C sites.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: ACS Nano Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: ACS Nano Ano de publicação: 2023 Tipo de documento: Article