Your browser doesn't support javascript.
loading
Development of a Mixed Multinuclear Cluster Strategy in Metal-Organic Frameworks for Methane Purification and Storage.
Lei, Jiao; Yuan, Wenyu; Shang, Jianxuan; Xu, Jie; Zhang, Peng; Wang, Ying; Li, Yong-Peng; Zhai, Quan-Guo.
Afiliação
  • Lei J; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
  • Yuan W; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
  • Shang J; Modern Chemical Technology Department, Shaanxi Coal and Chemical Technology Institute Co. Ltd., No. 166 Shenzhou 7th Road, Xi'an, Shaanxi 710100, China.
  • Xu J; Modern Chemical Technology Department, Shaanxi Coal and Chemical Technology Institute Co. Ltd., No. 166 Shenzhou 7th Road, Xi'an, Shaanxi 710100, China.
  • Zhang P; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
  • Wang Y; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
  • Li YP; School of Chemistry and Chemical Engineering, Institute of Applied Catalysis, Yantai University, Yantai 264005, China.
  • Zhai QG; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
Inorg Chem ; 62(37): 15195-15205, 2023 Sep 18.
Article em En | MEDLINE | ID: mdl-37656912
ABSTRACT
Metal-organic frameworks (MOFs) have attracted extensive attention in methane (CH4) purification and storage. Specially, multinuclear cluster-based MOFs usually have prominent performance because of large cluster size and abundant open metal sites. However, compared to diverse combinations of organic linkers, one MOF with two or more multinuclear clusters is difficult to achieve. In this paper, we demonstrate a mixed multinuclear cluster strategy, which successfully led to three new heterometallic MOFs (SNNU-328-330) with the same common H3TATB [2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine] tritopic linker and six types of multinuclear clusters ([YCd(COO)4(µ2-H2O)], [YCd2(COO)8], [In3(COO)6(µ3-OH)], [In3Eu2(COO)9(µ3-OH)3(µ4-O)], [Y9(COO)12(µ3-OH)14] and [Y2Cd8(COO)16(µ2-H2O)4(µ3-OH)8]). Three MOF adsorbents all show great potentials to remove the impurities (CO2 and C2-hydrocarbons) in natural gas and show prominent high-pressure methane storage capacity. Among them, the ideal adsorbed solution theory separation ratios of equimolar C2H2/CH4, C2H4/CH4, C2H6/CH4, and CO2/CH4 at 298 K for SNNU-328 reach to 29.7-16.0, 19.1-8.2, 33.2-10.3, and 74.3-8.5, which have surpassed many famous MOF adsorbents. Dynamic breakthrough experiments conducted at 273 and 298 K showed that SNNU-330 can separate CH4 from C2H2/CH4, C2H4/CH4, C2H6/CH4, and CO2/CH4 mixtures with the breakthrough interval times of about 48.2, 17.9, 37.2, and 17.1 min g-1 (273 K, 1 bar, v/v = 50/50, 2 mL min-1), respectively. Remarkably, SNNU-329 exhibits extremely high methane storage performance at 298 K with the total uptake and working capacity of 192 cm3 cm-3 (95 bar) and 171 cm3 cm-3 (65 bar) due to the synergistic effects of high surface area, suitable pore sizes, and multiple open metal sites.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2023 Tipo de documento: Article