Your browser doesn't support javascript.
loading
Heterogeneous electro-Fenton treatment of chemotherapeutic drug busulfan using magnetic nanocomposites as catalyst.
Camcioglu, Sule; Özyurt, Baran; Oturan, Nihal; Portehault, David; Trellu, Clément; Oturan, Mehmet A.
Afiliação
  • Camcioglu S; Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100, Tandogan, Ankara, Turkey; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France. Electronic address: Sule.Camcioglu@eng.ankara.edu.tr.
  • Özyurt B; Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100, Tandogan, Ankara, Turkey; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
  • Oturan N; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
  • Portehault D; Sorbonne Université, CNRS, Laboratoire de Chimie de La Matière Condensée de Paris (CMCP), 4 Place Jussieu, Paris, France.
  • Trellu C; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
  • Oturan MA; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France. Electronic address: Mehmet.Oturan@univ-eiffel.fr.
Chemosphere ; 341: 140129, 2023 Nov.
Article em En | MEDLINE | ID: mdl-37690550
ABSTRACT
The rapid and efficient mineralization of the chemotherapeutic drug busulfan (BSF) as the target pollutant has been investigated for the first time by three different heterogeneous EF systems that were constructed to ensure the continuous electro-generation of H2O2 and •OH consisting of i) a multifunctional carbon felt (CF) based cathode composed of reduced graphene oxide (rGO), iron oxide nanoparticles and carbon black (CB) (rGO-Fe3O4/CB@CF), ii) rGO modified cathode (rGO/CB@CF) and rGO supported Fe3O4 (rGO-Fe3O4) catalyst and iii) rGO modified cathode (rGO/CB@CF) and multi walled carbon nanotube supported Fe3O4 (MWCNT-Fe3O4) catalyst. The effects of main variables, including the catalyst amount, applied current and initial pH were investigated. Based on the results, H2O2 was produced by oxygen reduction reaction (ORR) on the liquid-solid interface of both fabricated cathodes. •OH was generated by the reaction of H2O2 with the active site of ≡FeII on the surface of the multifunctional cathode and heterogeneous EF catalysts. Utilizing carbon materials with high conductivity, the redox cycling between ≡FeII and ≡FeIII was effectively facilitated and therefore promoted the performance of the process. The results demonstrated almost complete mineralization of BSF through the heterogeneous systems over a wide applicable pH range. According to the reusability and stability tests, multifunctional cathode exhibited outstanding performance after five consecutive cycles which is promising for the efficient mineralization of refractory organic pollutants. Moreover, intermediates products of BSF oxidation were identified and a plausible oxidation pathway was proposed. Therefore, this study demonstrates efficient and stable cathodes and catalysts for the efficient treatment of an anticancer active substance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Assunto principal: Poluentes Ambientais / Nanocompostos Tipo de estudo: Prognostic_studies Idioma: En Revista: Chemosphere Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Assunto principal: Poluentes Ambientais / Nanocompostos Tipo de estudo: Prognostic_studies Idioma: En Revista: Chemosphere Ano de publicação: 2023 Tipo de documento: Article