Your browser doesn't support javascript.
loading
Machine Learning Model Insights into Base-Catalyzed Hydrothermal Lignin Depolymerization.
Castro Garcia, Abraham; Cheng, Shuo; McGlynn, Shawn E; Cross, Jeffrey S.
Afiliação
  • Castro Garcia A; Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 S6-10, Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
  • Cheng S; Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 S6-10, Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
  • McGlynn SE; Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan.
  • Cross JS; Blue Marble Space Institute of Science, Seattle, Washington 98101, United States.
ACS Omega ; 8(35): 32078-32089, 2023 Sep 05.
Article em En | MEDLINE | ID: mdl-37692207
Lignin, an abundant component of plant matter, can be depolymerized into renewable aromatic chemicals and biofuels but remains underutilized. Homogeneously catalyzed depolymerization in water has gained attention due to its economic feasibility and performance but suffers from inconsistently reported yields of bio-oil and solid residues. In this study, machine learning methods were used to develop predictive models for bio-oil and solid residue yields by using a few reaction variables and were subsequently validated by doing experimental work and comparing the predictions to the results. The models achieved a coefficient of determination (R2) score of 0.83 and 0.76, respectively, for bio-oil yield and solid residue. Variable importance for each model was calculated by two different methodologies and was tied to existing studies to explain the model predictive behavior. Based on the outcome of the study, the creation of concrete guidelines for reporting in lignin depolymerization studies was recommended. Shapley additive explanation value analysis reveals that temperature and reaction time are generally the strongest predictors of experimental outcomes compared to the rest.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: ACS Omega Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: ACS Omega Ano de publicação: 2023 Tipo de documento: Article