Your browser doesn't support javascript.
loading
Eremophila purpurascens: Anti-oxidant, Anti-hyperglycemic, and Hepatoprotective Potential of Its Polyphenolic Rich Leaf Extract and Its LC-ESI-MS/MS Chemical Characterization and Standardization.
Youssef, Fadia S; Gamal El-Din, Mariam I; El-Beshbishy, Hesham A; Ashour, Mohamed L; Singab, Abdel-Nasser B.
Afiliação
  • Youssef FS; Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt.
  • Gamal El-Din MI; Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt.
  • El-Beshbishy HA; Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia.
  • Ashour ML; Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt.
  • Singab AB; Pharmacy Program, Batterjee Medical College, North Obhur, P.O. Box 6231, Jeddah 21442, Saudi Arabia.
ACS Omega ; 8(35): 31928-31940, 2023 Sep 05.
Article em En | MEDLINE | ID: mdl-37692227
The genus Eremophila, despite comprising more than 250 species, has scarce literature studies that could be traced concerning the chemical profile and bioactivity of Eremophila purpurascens. The current study targets the investigation of the in vitro and in vivo anti-oxidant, anti-hyperglycemic, and hepatoprotective potential of the polyphenol-rich leaf extract of E. purpurascens (EP). EP showed promising total anti-oxidant capacity with IC50 values of 106 and 114 µg/mL in 2,2'-azinobis [3-ethylbenzothiazoline-6-sulfonic acid]-diammonium salt (ABTS) and diphenyl-1-picrylhydrazyl (DPPH) assays, respectively, with total anti-oxidant capacities of 331, 245, and 1767 µmol/g in ABTS, DPPH, and ferric reducing anti-oxidant power assays, respectively. In HepG2 cells, pre-treated with CCl4, a dose of 100 µg/mL EP ameliorated the reduced superoxide dismutase and glutathione levels and total anti-oxidant capacity with values of 312.5 U/mL, 15.47 mg/dL, and 1.03 nmol/mL, respectively. In vitro anti-diabetic evaluation using 3T3-L1 adipocyte culture showed that at a dose of 30 µg/mL, the EP extract elicited a 6.3% decrease in the concentration of glucose (22.4 mmol/L), showing significant amelioration with regard to pioglitazone and insulin. EP also demonstrated elevated serum insulin by 77.78% with a marked reduction in fasting blood glucose level by 64.55% relative to the streptozotocin diabetic rats in vivo. EP also relieved the liver stress markers both in vitro in CCl4 and in vivo in tamoxifen (TAM) models. EP markedly decreased TAM toxicity, as demonstrated by the decline in the liver stress markers, ALT and AST, by 36.1 and 51.1%, respectively. It also relieved the oxidative stress triggered by TAM, as revealed by the reduction in the levels of TBARs and TNF-α by 21.4 and 40%, respectively. Liquid chromatography electrospray ionization mass spectrometry of EP revealed a total of twelve peaks belonging to phenylpropanoids, lignans, and phenolics, where verbascoside and pinoresinol-4-O-ß-d-glucoside represented the most abundant secondary metabolites. The docking experiment showed that tri-O-galloyl-hexoside had the best fitting within the NADPH oxidase active sites with binding energy (ΔG = -81.12 kcal/mol). Thus, the plant can be of beneficial value in the control of hyperglycemia in diabetic patients, besides its prophylactic potential against hepatic complications.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Omega Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Omega Ano de publicação: 2023 Tipo de documento: Article