Your browser doesn't support javascript.
loading
Unleashing the Full Potential of Photo-Driven CO Hydrogenation to Light Olefins over Carbon-Coated CoMn-Based Catalysts.
Li, Ruizhe; Li, Yuan; Li, Zhenhua; Ouyang, Shuxin; Yuan, Hong; Zhang, Tierui.
Afiliação
  • Li R; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
  • Li Y; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
  • Li Z; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
  • Ouyang S; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
  • Yuan H; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
  • Zhang T; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Adv Mater ; 35(44): e2307217, 2023 Nov.
Article em En | MEDLINE | ID: mdl-37704217
As a nonpetroleum process, photodriven Fischer-Tropsch synthesis provides a practical approach for the synthesis of light olefins. However, maximizing the solar-energy conversion efficiency based on the design of the composite catalyst and understanding the catalytic mechanism remain challenging. Herein, a novel carbon-coated CoMn-based catalyst, a C-coated mixture of Co and MnO, is designed for the efficient conversion of syngas to light olefins under light irradiation. The CoMnC-450 catalyst exhibits a CO conversion of 12.6% with a selectivity to light olefins of 36.5% under light irradiation, showing 5.5-fold the activity of thermocatalysis. Experimental characterizations as certain the CoMnC-450 catalyst can be excited to generate photogenerated carriers under light irradiation and then the electron transfer to metallic Co to form electron-rich active sites with carbon mediation, thereby enhancing the catalytic performance. In situ Fourier transform infrared spectroscopy and theoretical calculation based on density functional theory reveal the unique roles of photogenerated carriers in promoting the adsorption and activation of CO molecules. This study demonstrates a feasible catalyst model to efficiently utilize full-spectral solar light to produce the value-added chemical.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Ano de publicação: 2023 Tipo de documento: Article