Your browser doesn't support javascript.
loading
DFT Insights into MAX Phase Borides Hf2AB [A = S, Se, Te] in Comparison with MAX Phase Carbides Hf2AC [A = S, Se, Te].
Islam, Jakiul; Islam, Md Didarul; Ali, Md Ashraf; Akter, Hasina; Hossain, Aslam; Biswas, Mautushi; Hossain, Md Mukter; Uddin, Md Mohi; Naqib, Saleh Hasan.
Afiliação
  • Islam J; Department of Physics, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
  • Islam MD; National Institute of Textile Engineering and Research, Savar, Dhaka 1350, Bangladesh.
  • Ali MA; Department of Physics, Chittagong University of Engineering and Technology (CUET), Chattogram 4349, Bangladesh.
  • Akter H; Advanced Computational Materials Research Laboratory, Department of Physics, Chittagong University of Engineering and Technology (CUET), Chattogram4349, Bangladesh.
  • Hossain A; Department of Physics, Chittagong University of Engineering and Technology (CUET), Chattogram 4349, Bangladesh.
  • Biswas M; Advanced Computational Materials Research Laboratory, Department of Physics, Chittagong University of Engineering and Technology (CUET), Chattogram4349, Bangladesh.
  • Hossain MM; National Institute of Textile Engineering and Research, Savar, Dhaka 1350, Bangladesh.
  • Uddin MM; Department of Physics, Chittagong University of Engineering and Technology (CUET), Chattogram 4349, Bangladesh.
  • Naqib SH; Department of Physics, Chittagong University of Engineering and Technology (CUET), Chattogram 4349, Bangladesh.
ACS Omega ; 8(36): 32917-32930, 2023 Sep 12.
Article em En | MEDLINE | ID: mdl-37720781
ABSTRACT
In this work, density functional theory (DFT)-based calculations were performed to compute the physical properties (structural stability, mechanical behavior, and electronic, thermodynamic, and optical properties) of synthesized MAX phases Hf2SB, Hf2SC, Hf2SeB, Hf2SeC, and Hf2TeB and the as-yet-undiscovered MAX carbide phase Hf2TeC. Calculations of formation energy, phonon dispersion curves, and elastic constants confirmed the stability of the aforementioned compounds, including the predicted Hf2TeC. The obtained values of lattice parameters, elastic constants, and elastic moduli of Hf2SB, Hf2SC, Hf2SeB, Hf2SeC, and Hf2TeB showed fair agreement with earlier studies, whereas the values of the aforementioned parameters for the predicted Hf2TeC exhibit a good consequence of B replacement by C. The anisotropic mechanical properties are exhibited by the considered MAX phases. The metallic nature and its anisotropic behavior were revealed by the electronic band structure and density of states. The analysis of the thermal properties-Debye temperature, melting temperature, minimum thermal conductivity, and Grüneisen parameter-confirmed that the carbide phases were more suited than the boride phases considered herein. The MAX phase's response to incoming photons further demonstrated that they were metallic. Their suitability for use as coating materials to prevent solar heating was demonstrated by the reflectivity spectra. Additionally, this study demonstrated the impact of B replacing C in the MAX phases.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Omega Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Omega Ano de publicação: 2023 Tipo de documento: Article