Smartphone Imaging Flow Cytometry for High-Throughput Single-Cell Analysis.
Anal Chem
; 95(39): 14526-14532, 2023 10 03.
Article
em En
| MEDLINE
| ID: mdl-37733469
We present a portable imaging flow cytometer comprising a smartphone, a small-footprint optical framework, and a PDMS-based microfluidic device. Flow cytometric analysis is performed in a sheathless manner via elasto-inertial focusing with a custom-written Android program, integrating a graphical user interface (GUI) that provides a high degree of user control over image acquisition. The proposed system offers two different operational modes. First, "post-processing" mode enables particle/cell sizing at throughputs of up to 67â¯000 particles/s. Alternatively, "real-time" mode allows for integrated cell/particle classification with machine learning at throughputs of 100 particles/s. To showcase the efficacy of our platform, polystyrene particles are accurately enumerated within heterogeneous populations using the post-processing mode. In real-time mode, an open-source machine learning algorithm is deployed within a custom-developed Android application to classify samples containing cells of similar size but with different morphologies. The flow cytometer can extract high-resolution bright-field images with a spatial resolution <700 nm using the developed machine learning-based algorithm, achieving classification accuracies of 97% and 93% for Jurkat and EL4 cells, respectively. Our results confirm that the smartphone imaging flow cytometer (sIFC) is capable of both enumerating single particles in flow and identifying morphological features with high resolution and minimal hardware.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Diagnóstico por Imagem
/
Smartphone
Tipo de estudo:
Diagnostic_studies
Idioma:
En
Revista:
Anal Chem
Ano de publicação:
2023
Tipo de documento:
Article