Your browser doesn't support javascript.
loading
maskNMF: A denoise-sparsen-detect approach for extracting neural signals from dense imaging data.
Pasarkar, Amol; Kinsella, Ian; Zhou, Pengcheng; Wu, Melissa; Pan, Daisong; Fan, Jiang Lan; Wang, Zhen; Abdeladim, Lamiae; Peterka, Darcy S; Adesnik, Hillel; Ji, Na; Paninski, Liam.
Afiliação
  • Pasarkar A; Center for Theoretical Neuroscience and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
  • Kinsella I; Department of Computer Science, Columbia University, New York, NY, 10027, USA.
  • Zhou P; Center for Theoretical Neuroscience and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
  • Wu M; Department of Statistics, Columbia University, New York, NY, 10027, USA.
  • Pan D; Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
  • Fan JL; Department of Biomedical Engineering, Duke University, Durham, NC 27708.
  • Wang Z; Department of Physics, University of California, Berkeley, California 94720, USA.
  • Abdeladim L; Joint Bioengineering Graduate Program, University of California, Berkeley, CA 94720.
  • Peterka DS; Department of Electrical and Computer Engineering, UCLA, Los Angeles, CA, 90095, USA.
  • Adesnik H; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
  • Ji N; Center for Theoretical Neuroscience and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
  • Paninski L; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
bioRxiv ; 2023 Sep 15.
Article em En | MEDLINE | ID: mdl-37745388
A number of calcium imaging methods have been developed to monitor the activity of large populations of neurons. One particularly promising approach, Bessel imaging, captures neural activity from a volume by projecting within the imaged volume onto a single imaging plane, therefore effectively mixing signals and increasing the number of neurons imaged per pixel. These signals must then be computationally demixed to recover the desired neural activity. Unfortunately, currently-available demixing methods can perform poorly in the regime of high imaging density (i.e., many neurons per pixel). In this work we introduce a new pipeline (maskNMF) for demixing dense calcium imaging data. The main idea is to first denoise and temporally sparsen the observed video; this enhances signal strength and reduces spatial overlap significantly. Next we detect neurons in the sparsened video using a neural network trained on a library of neural shapes. These shapes are derived from segmented electron microscopy images input into a Bessel imaging model; therefore no manual selection of "good" neural shapes from the functional data is required here. After cells are detected, we use a constrained non-negative matrix factorization approach to demix the activity, using the detected cells' shapes to initialize the factorization. We test the resulting pipeline on both simulated and real datasets and find that it is able to achieve accurate demixing on denser data than was previously feasible, therefore enabling faithful imaging of larger neural populations. The method also provides good results on more "standard" two-photon imaging data. Finally, because much of the pipeline operates on a significantly compressed version of the raw data and is highly parallelizable, the algorithm is fast, processing large datasets faster than real time.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: BioRxiv Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: BioRxiv Ano de publicação: 2023 Tipo de documento: Article