Your browser doesn't support javascript.
loading
Separation of CTCs from WBCs using DEP-assisted inertial manipulation: A numerical study.
Uddin, Mohammed Raihan; Sarowar, Md Tanbir; Chen, Xiaolin.
Afiliação
  • Uddin MR; School of Engineering and Computer Science, Washington State University, Vancouver, Washington, USA.
  • Sarowar MT; School of Engineering and Computer Science, Washington State University, Vancouver, Washington, USA.
  • Chen X; School of Engineering and Computer Science, Washington State University, Vancouver, Washington, USA.
Electrophoresis ; 44(23): 1781-1794, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37753944
ABSTRACT
Isolation and detection of circulating tumor cells (CTCs) hold significant importance for the early diagnosis of cancer and the assessment of therapeutic strategies. However, the scarcity of CTCs among peripheral blood cells presents a major challenge to their detection. Additionally, a similar size range between CTCs and white blood cells (WBCs) makes conventional microfluidic platforms inadequate for the isolation of CTCs. To overcome these challenges, in this study, a novel inertial-dielectrophoretic microfluidic channel for size-independent, single-stage separation of CTCs from WBCs has been presented. The proposed device utilizes a spiral microchannel embedded with interdigitated electrodes. A numerical model is developed and validated to investigate the influence of various parameters related to the channel design, fluid flow, and electrode configuration. It was found that optimal separation of CTCs could be obtained at a relatively low voltage, termed the critical voltage. Furthermore, at the critical voltage of 7.5 V, the hybrid microchannel is demonstrated to be capable of separating CTCs from different WBC subtypes including granulocytes, monocytes, T-, and B-lymphocytes. The unique capabilities of the hybrid spiral microchannel allow for this size-independent isolation of CTCs from a mixture of WBCs. Overall, the proposed technique can be readily utilized for continuous and high-throughput separation of cancer cells.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Analíticas Microfluídicas / Células Neoplásicas Circulantes Tipo de estudo: Screening_studies Limite: Humans Idioma: En Revista: Electrophoresis Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Analíticas Microfluídicas / Células Neoplásicas Circulantes Tipo de estudo: Screening_studies Limite: Humans Idioma: En Revista: Electrophoresis Ano de publicação: 2023 Tipo de documento: Article