Your browser doesn't support javascript.
loading
Single-Cell Mapping of Brain Myeloid Cell Subsets Reveals Key Transcriptomic Changes Favoring Neuroplasticity after Ischemic Stroke.
Liu, Fangxi; Cheng, Xi; Zhao, Chuansheng; Zhang, Xiaoqian; Liu, Chang; Zhong, Shanshan; Liu, Zhouyang; Lin, Xinyu; Qiu, Wei; Zhang, Xiuchun.
Afiliação
  • Liu F; Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
  • Cheng X; Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
  • Zhao C; Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
  • Zhang X; Stroke Center, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
  • Liu C; Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
  • Zhong S; Stroke Center, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
  • Liu Z; Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
  • Lin X; Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
  • Qiu W; Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
  • Zhang X; Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China. qiuwei@mail.sysu.edu.cn.
Neurosci Bull ; 40(1): 65-78, 2024 Jan.
Article em En | MEDLINE | ID: mdl-37755676
ABSTRACT
Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain's immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Isquemia Encefálica / AVC Isquêmico Limite: Humans Idioma: En Revista: Neurosci Bull Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Isquemia Encefálica / AVC Isquêmico Limite: Humans Idioma: En Revista: Neurosci Bull Ano de publicação: 2024 Tipo de documento: Article