Your browser doesn't support javascript.
loading
Na+-preferential ion transporter HKT1;1 mediates salt tolerance in blueberry.
Song, Huifang; Cao, Yibo; Zhao, Xinyan; Zhang, Lingyun.
Afiliação
  • Song H; State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, College of Forestry, Beijing Forestry University, Beijing 100083, China.
  • Cao Y; State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, College of Forestry, Beijing Forestry University, Beijing 100083, China.
  • Zhao X; State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, College of Forestry, Beijing Forestry University, Beijing 100083, China.
  • Zhang L; State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, College of Forestry, Beijing Forestry University, Beijing 100083, China.
Plant Physiol ; 194(1): 511-529, 2023 Dec 30.
Article em En | MEDLINE | ID: mdl-37757893
ABSTRACT
Soil salinity is a major environmental factor constraining growth and productivity of highbush blueberry (Vaccinium corymbosum). Leaf Na+ content is associated with variation in salt tolerance among blueberry cultivars; however, the determinants and mechanisms conferring leaf Na+ exclusion are unknown. Here, we observed that the blueberry cultivar 'Duke' was more tolerant than 'Sweetheart' and accumulated less Na+ in leaves under salt stress conditions. Through transcript profiling, we identified a member of the high-affinity K+ transporter (HKT) family in blueberry, VcHKT1;1, as a candidate gene involved in leaf Na+ exclusion and salt tolerance. VcHKT1;1 encodes a Na+-preferential transporter localized to the plasma membrane and is preferentially expressed in the root stele. Heterologous expression of VcHKT1;1 in Arabidopsis (Arabidopsis thaliana) rescued the salt hypersensitivity phenotype of the athkt1 mutant. Decreased VcHKT1;1 transcript levels in blueberry plants expressing antisense-VcHKT1;1 led to increased Na+ concentrations in xylem sap and higher leaf Na+ contents compared with wild-type plants, indicating that VcHKT1;1 promotes leaf Na+ exclusion by retrieving Na+ from xylem sap. A naturally occurring 8-bp insertion in the promoter increased the transcription level of VcHKT1;1, thus promoting leaf Na+ exclusion and blueberry salt tolerance. Collectively, we provide evidence that VcHKT1;1 promotes leaf Na+ exclusion and propose natural variation in VcHKT1;1 will be valuable for breeding Na+-tolerant blueberry cultivars in the future.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arabidopsis / Mirtilos Azuis (Planta) Tipo de estudo: Prognostic_studies Idioma: En Revista: Plant Physiol Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arabidopsis / Mirtilos Azuis (Planta) Tipo de estudo: Prognostic_studies Idioma: En Revista: Plant Physiol Ano de publicação: 2023 Tipo de documento: Article