Dual-targeted delivery system using hollow silica nanoparticles with H+-triggered bubble generating characteristic coated with hyaluronic acid and AS1411 for cancer therapy.
Drug Dev Ind Pharm
; 49(10): 648-657, 2023 Oct.
Article
em En
| MEDLINE
| ID: mdl-37772892
OBJECTIVE: Herein, a dual-targeting delivery system using mesoporous silica nanoparticles with hollow structures (HMSNs) was developed for the specific delivery of epirubicin (EPI) to cancer cells and introducing a H+-triggered bubble generating nanosystem (BGNS). HMSNs containing EPI are covered by hyaluronic acid (HA) shell and AS1411 aptamer to create the BGNS-EPI-HA-Apt complex, which is highly selective against CD44 marker and nucleolin overexpressed on the surface of tumor cells. METHODS: MTT assay compared the cytotoxicity of different treatments in CHO (Chinese hamster ovary) cells as well as 4T1 (murine mammary carcinoma) and MCF-7 (human breast adenocarcinoma) cells. The internalization of Epi was assessed by flow cytometry along with fluorescence imaging. In vivo studies were conducted on BALB/c mice bearing a tumor from 4T1 cell line where monitoring included measuring tumor volume, mouse weight changes over time alongside mortality rate; accumulation levels for Epi within organs were also measured during this process. RESULTS: The collected data illustrated that BGNS-EPI-HA-Apt complex controlled the release of EPI in a sustained method. Afterward, receptor-mediated internalization via nucleolin and CD44 was verified in 4T1 and MCF-7 cells using fluorescence microscopy assay and flow cytometry analysis. The results of tumor inhibitory effect study exhibited that BGNS-EPI-HA-Apt complex decreased off-target effect and improved on-target effects because of its targeting ability. CONCLUSION: The data acquired substantiates that HA-surface modified HMSNs functionalized with aptamers possess significant potential as a focused platform for efficient transportation of anticancer agents to neoplastic tissues.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Contexto em Saúde:
6_ODS3_enfermedades_notrasmisibles
Base de dados:
MEDLINE
Assunto principal:
Neoplasias da Mama
/
Nanopartículas
Limite:
Animals
/
Female
/
Humans
Idioma:
En
Revista:
Drug Dev Ind Pharm
Ano de publicação:
2023
Tipo de documento:
Article