Your browser doesn't support javascript.
loading
Artificial intelligence methods in kinase target profiling: Advances and challenges.
Gu, Shukai; Liu, Huanxiang; Liu, Liwei; Hou, Tingjun; Kang, Yu.
Afiliação
  • Gu S; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
  • Liu H; Faculty of Applied Science, Macao Polytechnic University, Macao 999078.
  • Liu L; Advanced Computing and Storage Laboratory, Central Research Institute, 2012 Laboratories, Huawei Technologies Co. Ltd, Nanjing 210000, Jiangsu, China.
  • Hou T; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China. Electronic address: tingjunhou@zju.edu.cn.
  • Kang Y; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China. Electronic address: yukang@zju.edu.cn.
Drug Discov Today ; 28(11): 103796, 2023 Nov.
Article em En | MEDLINE | ID: mdl-37805065
Kinases have a crucial role in regulating almost the full range of cellular processes, making them essential targets for therapeutic interventions against various diseases. Accurate kinase-profiling prediction is vital for addressing the selectivity/specificity challenges in kinase drug discovery, which is closely related to lead optimization, drug repurposing, and the understanding of potential drug side effects. In this review, we provide an overview of the latest advancements in machine learning (ML)-based and deep learning (DL)-based quantitative structure-activity relationship (QSAR) models for kinase profiling. We highlight current trends in this rapidly evolving field and discuss the existing challenges and future directions regarding experimental data set construction and model architecture design. Our aim is to offer practical insights and guidance for the development and utilization of these approaches.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Descoberta de Drogas Tipo de estudo: Guideline / Prognostic_studies Idioma: En Revista: Drug Discov Today Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Descoberta de Drogas Tipo de estudo: Guideline / Prognostic_studies Idioma: En Revista: Drug Discov Today Ano de publicação: 2023 Tipo de documento: Article