Your browser doesn't support javascript.
loading
Targeted knockout of a conserved plant mitochondrial gene by genome editing.
Forner, Joachim; Kleinschmidt, Dennis; Meyer, Etienne H; Gremmels, Jürgen; Morbitzer, Robert; Lahaye, Thomas; Schöttler, Mark A; Bock, Ralph.
Afiliação
  • Forner J; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
  • Kleinschmidt D; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
  • Meyer EH; Institut für Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
  • Gremmels J; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
  • Morbitzer R; ZMBP, Allgemeine Genetik, Universität Tübingen, Tübingen, Germany.
  • Lahaye T; ZMBP, Allgemeine Genetik, Universität Tübingen, Tübingen, Germany.
  • Schöttler MA; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
  • Bock R; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany. rbock@mpimp-golm.mpg.de.
Nat Plants ; 9(11): 1818-1831, 2023 11.
Article em En | MEDLINE | ID: mdl-37814021
ABSTRACT
Fusion proteins derived from transcription activator-like effectors (TALEs) have emerged as genome editing tools for mitochondria. TALE nucleases (TALENs) have been applied to delete chimaeric reading frames and duplicated (redundant) genes but produced complex genomic rearrangements due to the absence of non-homologous end-joining. Here we report the targeted deletion of a conserved mitochondrial gene, nad9, encoding a subunit of respiratory complex I. By generating a large number of TALEN-mediated mitochondrial deletion lines, we isolated, in addition to mutants with rearranged genomes, homochondriomic mutants harbouring clean nad9 deletions. Characterization of the knockout plants revealed impaired complex I biogenesis, male sterility and defects in leaf and flower development. We show that these defects can be restored by expressing a functional Nad9 protein from the nuclear genome, thus creating a synthetic cytoplasmic male sterility system. Our data (1) demonstrate the feasibility of using genome editing to study mitochondrial gene functions by reverse genetics, (2) highlight the role of complex I in plant development and (3) provide proof-of-concept for the construction of synthetic cytoplasmic male sterility systems for hybrid breeding by genome editing.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genes Mitocondriais / Edição de Genes Idioma: En Revista: Nat Plants Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genes Mitocondriais / Edição de Genes Idioma: En Revista: Nat Plants Ano de publicação: 2023 Tipo de documento: Article