Your browser doesn't support javascript.
loading
Efficient exon skipping by base-editor-mediated abrogation of exonic splicing enhancers.
Qiu, Han; Li, Geng; Yuan, Juanjuan; Yang, Dian; Ma, Yunqing; Wang, Feng; Dai, Yi; Chang, Xing.
Afiliação
  • Qiu H; Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province,
  • Li G; Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province,
  • Yuan J; Shunde Hospital, Southern Medical University, Foshan 528308, Guangdong, China.
  • Yang D; Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province,
  • Ma Y; Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province,
  • Wang F; Department of Laboratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.
  • Dai Y; Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China.
  • Chang X; Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province,
Cell Rep ; 42(11): 113340, 2023 11 28.
Article em En | MEDLINE | ID: mdl-37906593
ABSTRACT
Duchenne muscular dystrophy (DMD) is a severe genetic disease caused by the loss of the dystrophin protein. Exon skipping is a promising strategy to treat DMD by restoring truncated dystrophin. Here, we demonstrate that base editors (e.g., targeted AID-mediated mutagenesis [TAM]) are able to efficiently induce exon skipping by disrupting functional redundant exonic splicing enhancers (ESEs). By developing an unbiased and high-throughput screening to interrogate exonic sequences, we successfully identify novel ESEs in DMD exons 51 and 53. TAM-CBE (cytidine base editor) induces near-complete skipping of the respective exons by targeting these ESEs in patients' induced pluripotent stem cell (iPSC)-derived cardiomyocytes. Combined with strategies to disrupt splice sites, we identify suitable single guide RNAs (sgRNAs) with TAM-CBE to efficiently skip most DMD hotspot exons without substantial double-stranded breaks. Our study thus expands the repertoire of potential targets for CBE-mediated exon skipping in treating DMD and other RNA mis-splicing diseases.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Distrofina / Distrofia Muscular de Duchenne Limite: Humans Idioma: En Revista: Cell Rep Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Distrofina / Distrofia Muscular de Duchenne Limite: Humans Idioma: En Revista: Cell Rep Ano de publicação: 2023 Tipo de documento: Article