Your browser doesn't support javascript.
loading
Interplay between lncRNA RP11-367G18.1 variant 2 and YY1 plays a vital role in hypoxia-mediated gene expression and tumorigenesis.
Peng, Pei-Hua; Chen, Ji-Lin; Wu, Heng-Hsiung; Yang, Wen-Hao; Lin, Li-Jie; Lai, Joseph Chieh-Yu; Chang, Jeng-Shou; Syu, Jia-Ling; Wu, Han-Tsang; Hsu, Fei-Ting; Cheng, Wei-Chung; Hsu, Kai-Wen.
Afiliação
  • Peng PH; Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan.
  • Chen JL; Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih- Pai Road, Taipei, 112, Taiwan.
  • Wu HH; Research Center for Cancer Biology, China Medical University, Taichung, 40402, Taiwan.
  • Yang WH; Drug Development Center, Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, 40402, Taiwan.
  • Lin LJ; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan.
  • Lai JC; Research Center for Cancer Biology, China Medical University, Taichung, 40402, Taiwan.
  • Chang JS; The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, 40402, Taiwan.
  • Syu JL; Institute of Biomedical Science, China Medical University, Taichung, 40402, Taiwan.
  • Wu HT; Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan.
  • Hsu FT; Research Center for Cancer Biology, China Medical University, Taichung, 40402, Taiwan.
  • Cheng WC; Cancer Research Center, Changhua Christian Hospital, Changhua, 500, Taiwan.
  • Hsu KW; Department of Biological Science and Technology, China Medical University, Taichung, 40402, Taiwan. Sakiro920@gmail.com.
Cancer Cell Int ; 23(1): 266, 2023 Nov 08.
Article em En | MEDLINE | ID: mdl-37941005
ABSTRACT

BACKGROUND:

The hypoxia-responsive long non-coding RNA, RP11-367G18.1, has recently been reported to induce histone 4 lysine 16 acetylation (H4K16Ac) through its variant 2; however, the underlying molecular mechanism remains poorly understood.

METHODS:

RNA pull-down assay and liquid chromatography-tandem mass spectrometry were performed to identify RP11-367G18.1 variant 2-binding partner. The molecular events were examined utilizing western blot analysis, real-time PCR, luciferase reporter assay, chromatin immunoprecipitation, and chromatin isolation by RNA purification assays. The migration, invasion, soft agar colony formation, and in vivo xenograft experiments were conducted to evaluate the impact of RP11-367G18.1 variant 2-YY1 complex on tumor progression.

RESULTS:

In this study, RNA sequencing data revealed that hypoxia and RP11-367G18.1 variant 2 co-regulated genes were enriched in tumor-related pathways. YY1 was identified as an RP11-367G18.1 variant 2-binding partner that activates the H4K16Ac mark. YY1 was upregulated under hypoxic conditions and served as a target gene for hypoxia-inducible factor-1α. RP11-367G18.1 variant 2 colocalized with YY1 and H4K16Ac in the nucleus under hypoxic conditions. Head and neck cancer tissues had higher levels of RP11-367G18.1 and YY1 which were associated with poor patient outcomes. RP11-367G18.1 variant 2-YY1 complex contributes to hypoxia-induced epithelial-mesenchymal transition, cell migration, invasion, and tumorigenicity. YY1 regulated hypoxia-induced genes dependent on RP11-367G18.1 variant 2.

CONCLUSIONS:

RP11-367G18.1 variant 2-YY1 complex mediates the tumor-promoting effects of hypoxia, suggesting that this complex can be targeted as a novel therapeutic strategy for cancer treatment.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Cancer Cell Int Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Cancer Cell Int Ano de publicação: 2023 Tipo de documento: Article