Your browser doesn't support javascript.
loading
Quantum-enhanced greedy combinatorial optimization solver.
Dupont, Maxime; Evert, Bram; Hodson, Mark J; Sundar, Bhuvanesh; Jeffrey, Stephen; Yamaguchi, Yuki; Feng, Dennis; Maciejewski, Filip B; Hadfield, Stuart; Alam, M Sohaib; Wang, Zhihui; Grabbe, Shon; Lott, P Aaron; Rieffel, Eleanor G; Venturelli, Davide; Reagor, Matthew J.
Afiliação
  • Dupont M; Rigetti Computing, Berkeley, CA 94710, USA.
  • Evert B; Rigetti Computing, Berkeley, CA 94710, USA.
  • Hodson MJ; Rigetti Computing, Berkeley, CA 94710, USA.
  • Sundar B; Rigetti Computing, Berkeley, CA 94710, USA.
  • Jeffrey S; Rigetti Computing, Berkeley, CA 94710, USA.
  • Yamaguchi Y; Rigetti Computing, Berkeley, CA 94710, USA.
  • Feng D; Rigetti Computing, Berkeley, CA 94710, USA.
  • Maciejewski FB; QuAIL, NASA Ames Research Center, Moffett Field, CA 94035, USA.
  • Hadfield S; USRA Research Institute for Advanced Computer Science, Mountain View, CA 94035, USA.
  • Alam MS; QuAIL, NASA Ames Research Center, Moffett Field, CA 94035, USA.
  • Wang Z; USRA Research Institute for Advanced Computer Science, Mountain View, CA 94035, USA.
  • Grabbe S; QuAIL, NASA Ames Research Center, Moffett Field, CA 94035, USA.
  • Lott PA; USRA Research Institute for Advanced Computer Science, Mountain View, CA 94035, USA.
  • Rieffel EG; QuAIL, NASA Ames Research Center, Moffett Field, CA 94035, USA.
  • Venturelli D; USRA Research Institute for Advanced Computer Science, Mountain View, CA 94035, USA.
  • Reagor MJ; QuAIL, NASA Ames Research Center, Moffett Field, CA 94035, USA.
Sci Adv ; 9(45): eadi0487, 2023 Nov 10.
Article em En | MEDLINE | ID: mdl-37948523
ABSTRACT
Combinatorial optimization is a broadly attractive area for potential quantum advantage, but no quantum algorithm has yet made the leap. Noise in quantum hardware remains a challenge, and more sophisticated quantum-classical algorithms are required to bolster their performance. Here, we introduce an iterative quantum heuristic optimization algorithm to solve combinatorial optimization problems. The quantum algorithm reduces to a classical greedy algorithm in the presence of strong noise. We implement the quantum algorithm on a programmable superconducting quantum system using up to 72 qubits for solving paradigmatic Sherrington-Kirkpatrick Ising spin glass problems. We find the quantum algorithm systematically outperforms its classical greedy counterpart, signaling a quantum enhancement. Moreover, we observe an absolute performance comparable with a state-of-the-art semidefinite programming method. Classical simulations of the algorithm illustrate that a key challenge to reaching quantum advantage remains improving the quantum device characteristics.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Adv Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Adv Ano de publicação: 2023 Tipo de documento: Article