Your browser doesn't support javascript.
loading
Titanium-doped PET nanoplastics, from opaque milk bottle degradation, as a model of environmental true-to-life nanoplastics. Hazardous effects on Drosophila.
Alaraby, Mohamed; Villacorta, Aliro; Abass, Doaa; Hernández, Alba; Marcos, Ricard.
Afiliação
  • Alaraby M; Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Zoology Department, Faculty of Sciences, Sohag University (82524), Sohag, Egypt.
  • Villacorta A; Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile.
  • Abass D; Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Zoology Department, Faculty of Sciences, Sohag University (82524), Sohag, Egypt.
  • Hernández A; Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
  • Marcos R; Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain. Electronic address: ricard.marcos@uab.cat.
Environ Pollut ; 341: 122968, 2024 Jan 15.
Article em En | MEDLINE | ID: mdl-37979650
ABSTRACT
Micro and nanoplastics (MNPLs) are emergent environmental pollutants, resulting from the degradation of plastic waste, requiring urgent information on their potential risks to human health. To determine such risks, reliable true-to-life materials are essential. In this work, we have used titanium-doped PET NPLs [PET(Ti)NPLs], obtained by grinding opaque milk polyethylene terephthalate (PET) bottles, as a true-to-life MNPLs model. These opaque PET bottles, with an average size of 112 nm, contain about 3% Ti in the form of titanium dioxide rod nanoparticles. TEM investigation confirmed the mixed Ti/PET nature of the obtained true-to-life NPLs, and the rod shape of the embedded TiO2NPs. In the in vivo Drosophila model neither PET(Ti)NPLs nor TiO2NPs reduced the survival rates, although their internalization was confirmed in different compartments of the larval body by using confocal and transmission electron microscopies. The presence of Ti in the PET(Ti)NPLs permitted to quantify its presence both in larvae (2.1 ± 2.2 µg/g of Ti) and in the resulting adults (3.4 ± 3.2 µg/g of Ti) after treatment with 500 µg/g food of PET(Ti)NPL, suggesting its potential use to track their fate in more complex organisms such as mammals. PET(Ti)NPLs, as well as TiO2NPs, altered the expression of genes driving different response pathways, inducing significant oxidative stress levels (up to 10 folds), and genotoxicity. This last result on the genotoxic effects is remarkable in the frame of the hot topic discussion on the risk that titanium compounds, used as food additives, may pose to humans.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Assunto principal: Polietilenotereftalatos / Microplásticos Limite: Animals Idioma: En Revista: Environ Pollut Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Assunto principal: Polietilenotereftalatos / Microplásticos Limite: Animals Idioma: En Revista: Environ Pollut Ano de publicação: 2024 Tipo de documento: Article