Your browser doesn't support javascript.
loading
Minimizing Interfacial Recombination in 1.8 eV Triple-Halide Perovskites for 27.5% Efficient All-Perovskite Tandems.
Yang, Fengjiu; Tockhorn, Philipp; Musiienko, Artem; Lang, Felix; Menzel, Dorothee; Macqueen, Rowan; Köhnen, Eike; Xu, Ke; Mariotti, Silvia; Mantione, Daniele; Merten, Lena; Hinderhofer, Alexander; Li, Bor; Wargulski, Dan R; Harvey, Steven P; Zhang, Jiahuan; Scheler, Florian; Berwig, Sebastian; Roß, Marcel; Thiesbrummel, Jarla; Al-Ashouri, Amran; Brinkmann, Kai O; Riedl, Thomas; Schreiber, Frank; Abou-Ras, Daniel; Snaith, Henry; Neher, Dieter; Korte, Lars; Stolterfoht, Martin; Albrecht, Steve.
Afiliação
  • Yang F; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.
  • Tockhorn P; National Renewable Energy Laboratory, Golden, Colorado, 80401, USA.
  • Musiienko A; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.
  • Lang F; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.
  • Menzel D; Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam-Golm, Germany.
  • Macqueen R; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.
  • Köhnen E; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.
  • Xu K; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.
  • Mariotti S; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.
  • Mantione D; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.
  • Merten L; POLYMAT, University of the Basque Country UPV/EHU, Av. Tolosa 72, Donostia-San Sebastián, 20018, Spain.
  • Hinderhofer A; IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain.
  • Li B; POLYKEY s.l., Av. Tolosa 72, Donostia-San Sebastián, 20018, Spain.
  • Wargulski DR; Institute of Applied Physics, University of Tübingen, 72076, Tübingen, Germany.
  • Harvey SP; Institute of Applied Physics, University of Tübingen, 72076, Tübingen, Germany.
  • Zhang J; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.
  • Scheler F; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.
  • Berwig S; Materials, Chemical and Computational Sciences (MCCS), National Renewable Energy Laboratory, Golden, CO, 80401, USA.
  • Roß M; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.
  • Thiesbrummel J; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.
  • Al-Ashouri A; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.
  • Brinkmann KO; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.
  • Riedl T; Clarendon Laboratory, Department of Advanced Materials and Interfaces for Photovoltaic Solar Cells, University of Oxford, Parks Road, Oxford, OX1 3PU, UK.
  • Schreiber F; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.
  • Abou-Ras D; Institute of Electronic Devices, University of Wuppertal, 42119, Wuppertal, Germany.
  • Snaith H; Wuppertal Center for Smart Materials & Systems, University of Wuppertal, 42119, Wuppertal, Germany.
  • Neher D; Institute of Electronic Devices, University of Wuppertal, 42119, Wuppertal, Germany.
  • Korte L; Wuppertal Center for Smart Materials & Systems, University of Wuppertal, 42119, Wuppertal, Germany.
  • Stolterfoht M; Institute of Applied Physics, University of Tübingen, 72076, Tübingen, Germany.
  • Albrecht S; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.
Adv Mater ; 36(6): e2307743, 2024 Feb.
Article em En | MEDLINE | ID: mdl-37988595
All-perovskite tandem solar cells show great potential to enable the highest performance at reasonable costs for a viable market entry in the near future. In particular, wide-bandgap (WBG) perovskites with higher open-circuit voltage (VOC ) are essential to further improve the tandem solar cells' performance. Here, a new 1.8 eV bandgap triple-halide perovskite composition in conjunction with a piperazinium iodide (PI) surface treatment is developed. With structural analysis, it is found that the PI modifies the surface through a reduction of excess lead iodide in the perovskite and additionally penetrates the bulk. Constant light-induced magneto-transport measurements are applied to separately resolve charge carrier properties of electrons and holes. These measurements reveal a reduced deep trap state density, and improved steady-state carrier lifetime (factor 2.6) and diffusion lengths (factor 1.6). As a result, WBG PSCs achieve 1.36 V VOC , reaching 90% of the radiative limit. Combined with a 1.26 eV narrow bandgap (NBG) perovskite with a rubidium iodide additive, this enables a tandem cell with a certified scan efficiency of 27.5%.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Ano de publicação: 2024 Tipo de documento: Article