Your browser doesn't support javascript.
loading
Designing Efficient Non-Precious Metal Electrocatalysts for High-Performance Hydrogen Production: A Comprehensive Evaluation Strategy.
Wang, Meng; Ma, Wansen; Tan, Chaowen; Qiu, Zeming; Hu, Liwen; Lv, Xuewei; Li, Qian; Dang, Jie.
Afiliação
  • Wang M; College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China.
  • Ma W; College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China.
  • Tan C; College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China.
  • Qiu Z; College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China.
  • Hu L; College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China.
  • Lv X; College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China.
  • Li Q; National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China.
  • Dang J; State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China.
Small ; 20(14): e2306631, 2024 Apr.
Article em En | MEDLINE | ID: mdl-37988645
ABSTRACT
Developing abundant Earth-element and high-efficient electrocatalysts for hydrogen production is crucial in effectively reducing the cost of green hydrogen production. Herein, a strategy by comprehensively considering the computational chemical indicators for H* adsorption/desorption and dehydrogenation kinetics to evaluate the hydrogen evolution performance of electrocatalysts is proposed. Guided by the proposed strategy, a series of catalysts are constructed through a dual transition metal doping strategy. Density Functional Theory (DFT) calculations and experimental chemistry demonstrate that cobalt-vanadium co-doped Ni3N is an exceptionally ideal catalyst for hydrogen production from electrolyzed alkaline water. Specifically, Co,V-Ni3N requires only 10 and 41 mV in alkaline electrolytes and alkaline seawater, respectively, to achieve a hydrogen evolution current density of 10 mA cm-2. Moreover, it can operate steadily at a large industrial current density of 500 mA cm-2 for extended periods. Importantly, this evaluation strategy is extended to single-metal-doped Ni3N and found that it still exhibits significant universality. This study not only presents an efficient non-precious metal-based electrocatalyst for water/seawater electrolysis but also provides a significant strategy for the design of high-performance catalysts of electrolyzed water.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Ano de publicação: 2024 Tipo de documento: Article