Your browser doesn't support javascript.
loading
CcpA-Knockout Staphylococcus aureus Induces Abnormal Metabolic Phenotype via the Activation of Hepatic STAT5/PDK4 Signaling in Diabetic Mice.
Li, Yilang; Cai, Jiaxuan; Liu, Yinan; Li, Conglin; Chen, Xiaoqing; Wong, Wing-Leung; Jiang, Wenyue; Qin, Yuan; Zhang, Guiping; Hou, Ning; Yuan, Wenchang.
Afiliação
  • Li Y; Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China.
  • Cai J; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
  • Liu Y; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
  • Li C; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
  • Chen X; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
  • Wong WL; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
  • Jiang W; The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
  • Qin Y; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China.
  • Zhang G; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
  • Hou N; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
  • Yuan W; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
Pathogens ; 12(11)2023 Oct 30.
Article em En | MEDLINE | ID: mdl-38003764
ABSTRACT
Catabolite control protein A (CcpA), an important global regulatory protein, is extensively found in S. aureus. Many studies have reported that CcpA plays a pivotal role in regulating the tricarboxylic acid cycle and pathogenicity. Moreover, the CcpA-knockout Staphylococcus aureus (S. aureus) in diabetic mice, compared with the wild-type, showed a reduced colonization rate in the tissues and organs and decreased inflammatory factor expression. However, the effect of CcpA-knockout S. aureus on the host's energy metabolism in a high-glucose environment and its mechanism of action remain unclear. S. aureus, a common and major human pathogen, is increasingly found in patients with obesity and diabetes, as recent clinical data reveal. To address this issue, we generated CcpA-knockout S. aureus strains with different genetic backgrounds to conduct in-depth investigations. In vitro experiments with high-glucose-treated cells and an in vivo model study with type 1 diabetic mice were used to evaluate the unknown effect of CcpA-knockout strains on both the glucose and lipid metabolism phenotypes of the host. We found that the strains caused an abnormal metabolic phenotype in type 1 diabetic mice, particularly in reducing random and fasting blood glucose and increasing triglyceride and fatty acid contents in the serum. In a high-glucose environment, CcpA-knockout S. aureus may activate the hepatic STAT5/PDK4 pathway and affect pyruvate utilization. An abnormal metabolic phenotype was thus observed in diabetic mice. Our findings provide a better understanding of the molecular mechanism of glucose and lipid metabolism disorders in diabetic patients infected with S. aureus.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Pathogens Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Pathogens Ano de publicação: 2023 Tipo de documento: Article