Your browser doesn't support javascript.
loading
Bioactive Peptides from Ruditapes philippinarum Attenuate Hypertension and Cardiorenal Damage in Deoxycorticosterone Acetate-Salt Hypertensive Rats.
Sun, Zonghui; Wang, Weixia; Liu, Jinli; Zou, Shengcan; Yin, Dongli; Lyu, Chenghan; Yu, Jia; Wei, Yuxi.
Afiliação
  • Sun Z; College of Life Sciences, Qingdao University, Qingdao 266071, China.
  • Wang W; Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China.
  • Liu J; Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China.
  • Zou S; Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China.
  • Yin D; Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China.
  • Lyu C; Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China.
  • Yu J; College of Life Sciences, Qingdao University, Qingdao 266071, China.
  • Wei Y; College of Life Sciences, Qingdao University, Qingdao 266071, China.
Molecules ; 28(22)2023 Nov 15.
Article em En | MEDLINE | ID: mdl-38005332
ABSTRACT
Hypertension is a common disease that affects human health and can lead to damage to the heart, kidneys, and other important organs. In this study, we investigated the regulatory effects of bioactive peptides derived from Ruditapes philippinarum (RPP) on hypertension and organ protection in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. We found that RPPs exhibited significant blood pressure-lowering properties. Furthermore, the results showed that RPPs positively influenced vascular remodeling and effectively maintained a balanced water-sodium equilibrium. Meanwhile, RPPs demonstrated anti-inflammatory potential by reducing the serum levels of inflammatory cytokines (TNF-α, IL-2, and IL-6). Moreover, we observed the strong antioxidant activity of RPPs, which played a critical role in reducing oxidative stress and alleviating hypertension-induced damage to the aorta, heart, and kidneys. Additionally, our study explored the regulatory effects of RPPs on the gut microbiota, suggesting a possible correlation between their antihypertensive effects and the modulation of gut microbiota. Our previous studies have demonstrated that RPPs can significantly reduce blood pressure in SHR rats. This suggests that RPPs can significantly improve both essential hypertension and DOAC-salt-induced secondary hypertension and can ameliorate cardiorenal damage caused by hypertension. These findings further support the possibility of RPPs as an active ingredient in functional anti-hypertensive foods.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desoxicorticosterona / Hipertensão Limite: Animals / Humans Idioma: En Revista: Molecules Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desoxicorticosterona / Hipertensão Limite: Animals / Humans Idioma: En Revista: Molecules Ano de publicação: 2023 Tipo de documento: Article