Your browser doesn't support javascript.
loading
Multi-locus genome-wide association study and genomic prediction for flowering time in chrysanthemum.
Su, Jiangshuo; Lu, Zhaowen; Zeng, Junwei; Zhang, Xuefeng; Yang, Xiuwei; Wang, Siyue; Zhang, Fei; Jiang, Jiafu; Chen, Fadi.
Afiliação
  • Su J; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's
  • Lu Z; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's
  • Zeng J; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's
  • Zhang X; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's
  • Yang X; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's
  • Wang S; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's
  • Zhang F; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's
  • Jiang J; Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014, China.
  • Chen F; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's
Planta ; 259(1): 13, 2023 Dec 08.
Article em En | MEDLINE | ID: mdl-38063918
ABSTRACT
MAIN

CONCLUSION:

Multi-locus GWAS detected several known and candidate genes responsible for flowering time in chrysanthemum. The associations could greatly increase the predictive ability of genome selection that accelerates the possible application of GS in chrysanthemum breeding. Timely flowering is critical for successful reproduction and determines the economic value for ornamental plants. To investigate the genetic architecture of flowering time in chrysanthemum, a multi-locus genome-wide association study (GWAS) was performed using a collection of 200 accessions and 330,710 single-nucleotide polymorphisms (SNPs) via 3VmrMLM method. Five flowering time traits including budding (FBD), visible colouring (VC), early opening (EO), full-bloom (OF) and senescing (SF) stages, plus five derived conditional traits were recorded in two environments. Extensive phenotypic variations were observed for these flowering time traits with coefficients of variation ranging from 6.42 to 38.27%, and their broad-sense heritability ranged from 71.47 to 96.78%. GWAS revealed 88 stable quantitative trait nucleotides (QTNs) and 93 QTN-by-environment interactions (QEIs) associated with flowering time traits, accounting for 0.50-8.01% and 0.30-10.42% of the phenotypic variation, respectively. Amongst the genes around these stable QTNs and QEIs, 21 and 10 were homologous to known flowering genes in Arabidopsis; 20 and 11 candidate genes were mined by combining the functional annotation and transcriptomics data, respectively, such as MYB55, FRIGIDA-like, WRKY75 and ANT. Furthermore, genomic selection (GS) was assessed using three models and seven unique marker datasets. We found the prediction accuracy (PA) using significant SNPs identified by GWAS under SVM model exhibited the best performance with PA ranging from 0.90 to 0.95. Our findings provide new insights into the dynamic genetic architecture of flowering time and the identified significant SNPs and candidate genes will accelerate the future molecular improvement of chrysanthemum.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Chrysanthemum / Estudo de Associação Genômica Ampla Idioma: En Revista: Planta Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Chrysanthemum / Estudo de Associação Genômica Ampla Idioma: En Revista: Planta Ano de publicação: 2023 Tipo de documento: Article