Your browser doesn't support javascript.
loading
Phospholipids are imported into mitochondria by VDAC, a dimeric beta barrel scramblase.
Jahn, Helene; Bartos, Ladislav; Dearden, Grace I; Dittman, Jeremy S; Holthuis, Joost C M; Vácha, Robert; Menon, Anant K.
Afiliação
  • Jahn H; Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA.
  • Bartos L; CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
  • Dearden GI; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
  • Dittman JS; Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA.
  • Holthuis JCM; Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA.
  • Vácha R; Department of Molecular Cell Biology, University of Osnabrück, Osnabrück, 49076, Germany.
  • Menon AK; CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic. robert.vacha@muni.cz.
Nat Commun ; 14(1): 8115, 2023 Dec 08.
Article em En | MEDLINE | ID: mdl-38065946
ABSTRACT
Mitochondria are double-membrane-bounded organelles that depend critically on phospholipids supplied by the endoplasmic reticulum. These lipids must cross the outer membrane to support mitochondrial function, but how they do this is unclear. We identify the Voltage Dependent Anion Channel (VDAC), an abundant outer membrane protein, as a scramblase-type lipid transporter that catalyzes lipid entry. On reconstitution into membrane vesicles, dimers of human VDAC1 and VDAC2 catalyze rapid transbilayer translocation of phospholipids by a mechanism that is unrelated to their channel activity. Coarse-grained molecular dynamics simulations of VDAC1 reveal that lipid scrambling occurs at a specific dimer interface where polar residues induce large water defects and bilayer thinning. The rate of phospholipid import into yeast mitochondria is an order of magnitude lower in the absence of VDAC homologs, indicating that VDACs provide the main pathway for lipid entry. Thus, VDAC isoforms, members of a superfamily of beta barrel proteins, moonlight as a class of phospholipid scramblases - distinct from alpha-helical scramblase proteins - that act to import lipids into mitochondria.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfolipídeos / Canal de Ânion 1 Dependente de Voltagem Limite: Humans Idioma: En Revista: Nat Commun Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfolipídeos / Canal de Ânion 1 Dependente de Voltagem Limite: Humans Idioma: En Revista: Nat Commun Ano de publicação: 2023 Tipo de documento: Article