Your browser doesn't support javascript.
loading
Density affects plant size in the Gobi Desert.
Li, Yonghua; Xin, Zhiming; Yao, Bin; Duan, Ruibing; Dong, Xue; Bao, Yanfeng; Li, Xinle; Ma, Yuan; Huang, Yaru; Luo, Fengmin; Li, Xing; Wei, Xu; Jiang, Zi-Ru; Lozada-Gobilard, Sissi; Zhu, Jinlei.
Afiliação
  • Li Y; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; Gansu Dunhuang Desert Ecosystem National Observation and Research Station, Dunhuang 736200, China; Kumtag Desert Ecosystem National Observation and Research Station, Dunhuang 736200, China.
  • Xin Z; Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou County, Inner Mongolia 015200, China; Inner Mongolia Dengkou Desert Ecosystem National Observation Research Station, Dengkou 015200, China.
  • Yao B; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; Gansu Dunhuang Desert Ecosystem National Observation and Research Station, Dunhuang 736200, China; Kumtag Desert Ecosystem National Observation and Research Station, Dunhuang 736200, China.
  • Duan R; Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou County, Inner Mongolia 015200, China; Inner Mongolia Dengkou Desert Ecosystem National Observation Research Station, Dengkou 015200, China.
  • Dong X; Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou County, Inner Mongolia 015200, China; Inner Mongolia Dengkou Desert Ecosystem National Observation Research Station, Dengkou 015200, China.
  • Bao Y; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; Gansu Dunhuang Desert Ecosystem National Observation and Research Station, Dunhuang 736200, China; Kumtag Desert Ecosystem National Observation and Research Station, Dunhuang 736200, China.
  • Li X; Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou County, Inner Mongolia 015200, China; Inner Mongolia Dengkou Desert Ecosystem National Observation Research Station, Dengkou 015200, China.
  • Ma Y; Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou County, Inner Mongolia 015200, China; Inner Mongolia Dengkou Desert Ecosystem National Observation Research Station, Dengkou 015200, China.
  • Huang Y; Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou County, Inner Mongolia 015200, China; Inner Mongolia Dengkou Desert Ecosystem National Observation Research Station, Dengkou 015200, China.
  • Luo F; Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou County, Inner Mongolia 015200, China; Inner Mongolia Dengkou Desert Ecosystem National Observation Research Station, Dengkou 015200, China.
  • Li X; Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou County, Inner Mongolia 015200, China; Inner Mongolia Dengkou Desert Ecosystem National Observation Research Station, Dengkou 015200, China.
  • Wei X; School of Life Sciences, East China Normal University, Shanghai 200241, China.
  • Jiang ZR; Laboratory of Forest Protection, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 4648601, Japan.
  • Lozada-Gobilard S; Department of Biology, Lund University, Lund, Sweden.
  • Zhu J; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; Gansu Dunhuang Desert Ecosystem National Observation and Research Station, Dunhuang 736200, China; Kumtag Desert Ecosystem National Observation and Research Station, Dunhuang 736200, China. Elec
Sci Total Environ ; 912: 169401, 2024 Feb 20.
Article em En | MEDLINE | ID: mdl-38114032
ABSTRACT
Plant size is a crucial functional trait with substantial implications in agronomy and forestry. Understanding the factors influencing plant size is essential for ecosystem management and restoration efforts. Various environmental factors and plant density play significant roles in plant size. However, how plant size responds to mean annual precipitation (MAP), mean annual temperature (MAT), and density in the arid areas remains incomplete. To address this knowledge gap, we conducted comprehensive vegetation surveys in the Gobi Desert in northwestern China with a MAP below 250 mm. We also collected climate data to disentangle the respective influences of climate and density on the community-weighted plant height, crown length, and crown width. Our observations revealed that the community-weighted mean plant height, crown length, and width demonstrated a positive association with MAT but negative relationships with both MAP and density. These patterns can be attributed to the predominance of shrubs over herbs in arid regions, as shrubs tend to be larger in size. The proportion of shrubs increases with MAT, while it decreases with MAP and density, resulting in higher plant height and larger crown dimensions. Although both MAP and MAT affect plant size in the Gobi Desert, our findings highlight the stronger role of plant density in regulating plant size, indicating that the surrounding plant community and competition among individuals are crucial drivers of plant size patterns. Our findings provide valuable guidance for nature-based solutions for vegetation restoration and ecosystem management, highlighting the importance of considering plant density as a key factor when designing and implementing restoration strategies in arid areas.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ecossistema / Traqueófitas Limite: Humans País/Região como assunto: Asia Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ecossistema / Traqueófitas Limite: Humans País/Região como assunto: Asia Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article