Your browser doesn't support javascript.
loading
Development of optimized cytotoxicity assays for assessing the antitumor potential of CAR-T cells.
Eugene-Norbert, Misa; Cuffel, Alexis; Riou, Gaetan; Jean, Laetitia; Blondel, Clara; Dehayes, Justine; Bisson, Aurélie; Giverne, Camille; Brotin, Emilie; Denoyelle, Christophe; Poulain, Laurent; Boyer, Olivier; Martinet, Jérémie; Latouche, Jean-Baptiste.
Afiliação
  • Eugene-Norbert M; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France.
  • Cuffel A; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France.
  • Riou G; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France.
  • Jean L; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France.
  • Blondel C; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France.
  • Dehayes J; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France.
  • Bisson A; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France.
  • Giverne C; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France.
  • Brotin E; Université de Caen Normandie, Unité de Service PLATON, ImpedanCELL Core Facility, Caen F-14000, France.
  • Denoyelle C; Université de Caen Normandie, Unité de Service PLATON, ImpedanCELL Core Facility, Caen F-14000, France; Université de Caen Normandie, Inserm, ANTICIPE UMR (1086), Structure Fédérative 4207 Normandie Oncologie, Normandie Univ, Caen F-14000, France; Comprehensive Cancer Center F. Baclesse, Unicancer,
  • Poulain L; Université de Caen Normandie, Inserm, ANTICIPE UMR (1086), Structure Fédérative 4207 Normandie Oncologie, Normandie Univ, Caen F-14000, France; Comprehensive Cancer Center F. Baclesse, Unicancer, Caen F-14000, France.
  • Boyer O; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France.
  • Martinet J; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France. Electronic address: jeremie.martinet
  • Latouche JB; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France.
J Immunol Methods ; 525: 113603, 2024 02.
Article em En | MEDLINE | ID: mdl-38147898
ABSTRACT
CAR-T cells are T cells expressing a chimeric antigen receptor (CAR) rendering them capable of killing tumor cells after recognition of a target antigen. CD19 CAR-T cells have revolutionized the treatment of hematological malignancies. Their function is typically assessed by cytotoxicity assays using human allogeneic cell lines expressing the target antigen CD19 such as Nalm-6. However, an alloreactive reaction is observed with these cells, leading to a CD19-independent killing. To address this issue, we developed a fluorescence microscopy-based potency assay using murine target cells to provide an optimized cytotoxicity assay with enhanced specificity towards CD19. Murine NIH/3T3 (3T3) fibroblast-derived cell line and EL4 T-cell lymphoma-derived cell line were used as targets (no xenoreactivity was observed after coculture with human T cells). 3T3 and EL4 cells were engineered to express eGFP (enhanced Green Fluorescent Protein) and CD19 or CD22 using retroviral vectors. CD19 CAR-T cells and non-transduced (NT) control T cells were produced from several donors. After 4 h or 24 h, alloreactive cytotoxicity against CD19+ Nalm-6-GFP cells and CD19- Jurkat-GFP cells was observed with NT or CAR-T cells. In the same conditions, CAR-T but not NT cells specifically killed CD19+ but not CD19- 3T3-GFP or EL4-GFP cells. Both microscope- and flow cytometry-based assays revealed as sensitive as impedance-based assay. Using flow cytometry, we could further determine that CAR-T cells had mostly a stem cell-like memory phenotype after contact with EL4 target cells. Therefore, CD19+ 3T3-GFP or EL4-GFP cells and fluorescence microscopy- or flow cytometry-based assays provide convenient, sensitive and specific tools to evaluate CAR-T cell function with no alloreactivity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores de Antígenos Quiméricos Limite: Animals / Humans Idioma: En Revista: J Immunol Methods Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores de Antígenos Quiméricos Limite: Animals / Humans Idioma: En Revista: J Immunol Methods Ano de publicação: 2024 Tipo de documento: Article