Postzygotic barriers persist despite ongoing introgression in hybridizing Mimulus species.
Mol Ecol
; 33(4): e17261, 2024 Feb.
Article
em En
| MEDLINE
| ID: mdl-38174628
ABSTRACT
The evolution of postzygotic isolation is thought to be a key step in maintaining species boundaries upon secondary contact, yet the dynamics and persistence of hybrid incompatibilities in naturally hybridizing species are not well understood. Here, we explore these issues using genetic mapping in three independent populations of recombinant inbred lines between naturally hybridizing monkeyflowers, Mimulus guttatus and Mimulus nasutus, from the sympatric Catherine Creek population. We discover that the three M. guttatus founders differ dramatically in admixture history, with nearly a quarter of one founder's genome introgressed from M. nasutus. Comparative genetic mapping in the three RIL populations reveals three new putative inversions, each one segregating among the M. guttatus founders, two due to admixture. We find strong, genome-wide transmission ratio distortion in all RILs, but patterns are highly variable among the three populations. At least some of this distortion appears to be explained by epistatic selection favouring parental genotypes, but tests of inter-chromosomal linkage disequilibrium also reveal multiple candidate Dobzhansky-Muller incompatibilities. We also map several genetic loci for hybrid pollen viability, including two interacting pairs that coincide with peaks of distortion. Remarkably, even with this limited sample of three M. guttatus lines, we discover abundant segregating variation for hybrid incompatibilities with M. nasutus, suggesting this population harbours diverse contributors to postzygotic isolation. Moreover, even with substantial admixture, hybrid incompatibilities between Mimulus species persist, suggesting postzygotic isolation might be a potent force in maintaining species barriers in this system.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Mimulus
Idioma:
En
Revista:
Mol Ecol
Ano de publicação:
2024
Tipo de documento:
Article