Your browser doesn't support javascript.
loading
Chorioamnionitis accelerates granule cell and oligodendrocyte maturation in the cerebellum of preterm nonhuman primates.
Newman, Josef; Tong, Xiaoying; Tan, April; Yeasky, Toni; De Paiva, Vanessa Nunes; Presicce, Pietro; Kannan, Paranthaman S; Williams, Kevin; Damianos, Andreas; Tamase Newsam, Marione; Benny, Merline K; Wu, Shu; Young, Karen C; Miller, Lisa A; Kallapur, Suhas G; Chougnet, Claire A; Jobe, Alan H; Brambilla, Roberta; Schmidt, Augusto F.
Afiliação
  • Newman J; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA.
  • Tong X; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA.
  • Tan A; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA.
  • Yeasky T; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA.
  • De Paiva VN; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA.
  • Presicce P; Division of Neonatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, USA.
  • Kannan PS; Division of Neonatology and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA.
  • Williams K; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA.
  • Damianos A; Division of Neonatology and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA.
  • Tamase Newsam M; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA.
  • Benny MK; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA.
  • Wu S; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA.
  • Young KC; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA.
  • Miller LA; California National Primate Research Center, University of California, Davis, USA.
  • Kallapur SG; Division of Neonatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, USA.
  • Chougnet CA; Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA.
  • Jobe AH; Division of Neonatology and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA.
  • Brambilla R; The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, USA.
  • Schmidt AF; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA. aschmidt@med.miami.edu.
J Neuroinflammation ; 21(1): 16, 2024 Jan 10.
Article em En | MEDLINE | ID: mdl-38200558
ABSTRACT

BACKGROUND:

Preterm birth is often associated with chorioamnionitis and leads to increased risk of neurodevelopmental disorders, such as autism. Preterm birth can lead to cerebellar underdevelopment, but the mechanisms of disrupted cerebellar development in preterm infants are not well understood. The cerebellum is consistently affected in people with autism spectrum disorders, showing reduction of Purkinje cells, decreased cerebellar grey matter, and altered connectivity.

METHODS:

Preterm rhesus macaque fetuses were exposed to intra-amniotic LPS (1 mg, E. coli O55B5) at 127 days (80%) gestation and delivered by c-section 5 days after injections. Maternal and fetal plasma were sampled for cytokine measurements. Chorio-decidua was analyzed for immune cell populations by flow cytometry. Fetal cerebellum was sampled for histology and molecular analysis by single-nuclei RNA-sequencing (snRNA-seq) on a 10× chromium platform. snRNA-seq data were analyzed for differences in cell populations, cell-type specific gene expression, and inferred cellular communications.

RESULTS:

We leveraged snRNA-seq of the cerebellum in a clinically relevant rhesus macaque model of chorioamnionitis and preterm birth, to show that chorioamnionitis leads to Purkinje cell loss and disrupted maturation of granule cells and oligodendrocytes in the fetal cerebellum at late gestation. Purkinje cell loss is accompanied by decreased sonic hedgehog signaling from Purkinje cells to granule cells, which show an accelerated maturation, and to oligodendrocytes, which show accelerated maturation from pre-oligodendrocytes into myelinating oligodendrocytes.

CONCLUSION:

These findings suggest a role of chorioamnionitis on disrupted cerebellar maturation associated with preterm birth and on the pathogenesis of neurodevelopmental disorders among preterm infants.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 3_ND Base de dados: MEDLINE Assunto principal: Corioamnionite / Nascimento Prematuro Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans / Infant / Newborn / Pregnancy Idioma: En Revista: J Neuroinflammation Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 3_ND Base de dados: MEDLINE Assunto principal: Corioamnionite / Nascimento Prematuro Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans / Infant / Newborn / Pregnancy Idioma: En Revista: J Neuroinflammation Ano de publicação: 2024 Tipo de documento: Article