Your browser doesn't support javascript.
loading
Interspecific variations in growth, physiology and Cd accumulation between Populus deltoides and P. × canadensis in response to Cd pollution under two soil types.
Yin, Man; Mi, Jiaxuan; Wang, Xue; Xing, Cailan; Wan, Xueqin; Zhang, Fan; Yang, Hanbo; He, Fang; Hu, Hongling; Chen, Lianghua.
Afiliação
  • Yin M; College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
  • Mi J; College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
  • Wang X; College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
  • Xing C; College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
  • Wan X; College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China; Forestry Ecological Engineering in the U
  • Zhang F; College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China.
  • Yang H; College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China; Forestry Ecological Engineering in the U
  • He F; College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China; Forestry Ecological Engineering in the U
  • Hu H; College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China; Forestry Ecological Engineering in the U
  • Chen L; College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China; Forestry Ecological Engineering in the U
Ecotoxicol Environ Saf ; 271: 115951, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38211512
ABSTRACT
Both acid and alkaline purple soils in China are increasingly affected by Cd contamination. The selection of fast-growing trees suitable for remediating different soil types is urgent, yet there is a severe lack of relevant knowledge. In this study, we conducted a controlled pot experiment to compare the growth, physiology, and Cd accumulation efficiency of two widely recognized poplar species, namely Populus deltoides and P. × canadensis, under Cd contamination (1 mg kg-1) in acid and alkaline purple soils. The objective was to determine which poplar species is best suited for remediating different soil types. Our findings are as follows (1) the total biomass of both poplars remained largely unaffected by Cd pollution in both soil types. Notably, under Cd pollution, the total biomass of P. deltoides in acid purple soil was 1.53 times greater than that in alkaline purple soil. (2) Cd pollution did not significantly induce oxidative damage in the leaves of either poplar species in both soil types. However, in acid purple soil, Cd contamination led to a 21% increase in NO3- concentration and a 44% increase in NH4+ concentration in P. × canadensis leaves, whereas in alkaline purple soil, it led to a 59% increase in NH4+ concentration in P. deltoides leaves. (3) Cd concentrations in all root orders of P. × canadensis were significantly higher than those in P. deltoides, especially in the first three root orders, under alkaline purple soil. The total Cd accumulation by P. × canadensis in Cd-polluted alkaline purple soil was 2.18 times higher than that in Cd-polluted acid purple soil, a difference not observed in P. deltoides. (4) redundancy analysis indicated that the sequestration effect of higher soil organic matter on Cd availability in acid purple soil was more pronounced than the release effects caused by lower pH. In conclusion, P. × canadensis is better suited for remediating alkaline purple soil due to its higher capacity for Cd uptake, while P. deltoides is more suitable for remediating Cd-contaminated acid purple soil due to its better growth conditions and greater Cd enrichment capability.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Populus Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Populus Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2024 Tipo de documento: Article