Your browser doesn't support javascript.
loading
An ultrasensitive cellulose-based fluorescent sensor for Al3+ detection and its applications in plant tissue and food samples.
Zhou, Guocheng; Zhang, Zilong; Meng, Zhiyuan; Liang, Yueyin; Qian, Cheng; Wang, Zhonglong; Yang, Yiqin.
Afiliação
  • Zhou G; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
  • Zhang Z; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
  • Meng Z; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
  • Liang Y; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
  • Qian C; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
  • Wang Z; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address: wang_zhon
  • Yang Y; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address: wsfyyq@nj
Carbohydr Polym ; 328: 121726, 2024 Mar 15.
Article em En | MEDLINE | ID: mdl-38220346
ABSTRACT
Fluorescent sensors available for metal ions detection have been extensively developed in recent years. However, developing an ultrasensitive fluorescent sensor for highly selectively detecting Al3+ based on cellulose remains a challenge. In this study, an ethylcellulose-based flavonol fluorescent sensor named EC-BHA was synthesized by the esterification of ethylcellulose (EC) with a new flavonol derivative 4-(2-(2,3-bis(ethoxymeothy)phenyl)-3-hydroxy-4-oxo-4-H-chromen-7-yl) benzoic acid (BHA). The fluorescence intensity of EC-BHA exhibited a 180-fold increase at 490 nm after binding with Al3+ and provided an ultralow detection limit of 13.0 nM. The sensor showed some exceptional sensing properties including a broad pH range (4-10), large Stokes shifts (190 nm), and a short response time (3 min). This sensor was successfully applied for determining trace Al3+ in food samples as well as in plant tissue. Moreover, the electrostatic spun film EBP was fabricated by blending EC-BHA with PS (polystyrene) via electrostatic spinning technique and utilized for selective detection of Al3+ as soon as possible.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alumínio / Corantes Fluorescentes Tipo de estudo: Diagnostic_studies Idioma: En Revista: Carbohydr Polym Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alumínio / Corantes Fluorescentes Tipo de estudo: Diagnostic_studies Idioma: En Revista: Carbohydr Polym Ano de publicação: 2024 Tipo de documento: Article