Your browser doesn't support javascript.
loading
Transformative Technology for FLASH Radiation Therapy.
Schulte, Reinhard; Johnstone, Carol; Boucher, Salime; Esarey, Eric; Geddes, Cameron G R; Kravchenko, Maksim; Kutsaev, Sergey; Loo, Billy W; Méot, François; Mustapha, Brahim; Nakamura, Kei; Nanni, Emilio A; Obst-Huebl, Lieselotte; Sampayan, Stephen E; Schroeder, Carl B; Sheng, Ke; Snijders, Antoine M; Snively, Emma; Tantawi, Sami G; Van Tilborg, Jeroen.
Afiliação
  • Schulte R; Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
  • Johnstone C; Fermi National Accelerator Laboratory, Batavia, IL 60510, USA.
  • Boucher S; RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA.
  • Esarey E; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
  • Geddes CGR; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
  • Kravchenko M; RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA.
  • Kutsaev S; RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA.
  • Loo BW; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA.
  • Méot F; Brookhaven National Laboratory, Upton, NY 11973, USA.
  • Mustapha B; Argonne National Laboratory, Lemont, IL 60439, USA.
  • Nakamura K; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
  • Nanni EA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Obst-Huebl L; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
  • Sampayan SE; Lawrence Livermore National Laboratory, Livermore, CA 94551, USA.
  • Schroeder CB; Opcondys, Inc., Manteca, CA 95336, USA.
  • Sheng K; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
  • Snijders AM; Department of Radiation Oncology, University of California, San Francisco, CA 94115, USA.
  • Snively E; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
  • Tantawi SG; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
  • Van Tilborg J; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
Appl Sci (Basel) ; 13(8)2023 Apr 02.
Article em En | MEDLINE | ID: mdl-38240007
ABSTRACT
The general concept of radiation therapy used in conventional cancer treatment is to increase the therapeutic index by creating a physical dose differential between tumors and normal tissues through precision dose targeting, image guidance, and radiation beams that deliver a radiation dose with high conformality, e.g., protons and ions. However, the treatment and cure are still limited by normal tissue radiation toxicity, with the corresponding side effects. A fundamentally different paradigm for increasing the therapeutic index of radiation therapy has emerged recently, supported by preclinical research, and based on the FLASH radiation effect. FLASH radiation therapy (FLASH-RT) is an ultra-high-dose-rate delivery of a therapeutic radiation dose within a fraction of a second. Experimental studies have shown that normal tissues seem to be universally spared at these high dose rates, whereas tumors are not. While dose delivery conditions to achieve a FLASH effect are not yet fully characterized, it is currently estimated that doses delivered in less than 200 ms produce normal-tissue-sparing effects, yet effectively kill tumor cells. Despite a great opportunity, there are many technical challenges for the accelerator community to create the required dose rates with novel compact accelerators to ensure the safe delivery of FLASH radiation beams.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline Idioma: En Revista: Appl Sci (Basel) Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline Idioma: En Revista: Appl Sci (Basel) Ano de publicação: 2023 Tipo de documento: Article