Your browser doesn't support javascript.
loading
Facet-Controlled Growth of Hydroxyapatite for Effectively Removing Pb from Aqueous Solutions.
Kim, Hee Jung; Choi, Jin Hyuk; Lee, SangMyeong; Han, Gill Sang; Jung, Hyun Suk.
Afiliação
  • Kim HJ; School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
  • Choi JH; School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
  • Lee S; School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
  • Han GS; Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
  • Jung HS; School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
ACS Omega ; 9(2): 2730-2739, 2024 Jan 16.
Article em En | MEDLINE | ID: mdl-38250348
ABSTRACT
To address the growing concerns regarding severe water pollution, effective and environmentally friendly adsorbents must be identified. In this study, we prepared hydroxyapatite (HAp, Ca10(PO4)6(OH)2) as an eco-friendly absorbent via simple precipitation and obtained rod- (r-HAp) and plate-shaped HAp (p-HAp). The approach to obtaining p-HAp involved a low pH titration rate, promoting growth along the c-axis due to the adsorption of OH- on the (110) facet. Conversely, r-HAp was obtained by maintaining a high concentration of OH- during the initial stage through rapid pH titration, leading to a stronger restrictive effect on the growth of positively charged a(b)-planes. p-HAp demonstrated superior adsorption capacity, removing Pb through dissolution and recrystallization, achieving an impressive 625 mg/g within a 60 min reaction time compared to r-HAp. Our findings afford insights into the Pb removal mechanisms of HAp with different morphologies and can aid in the development of water purification strategies against heavy metal contamination.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: ACS Omega Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: ACS Omega Ano de publicação: 2024 Tipo de documento: Article