CRISPR/Cas genome editing revealed non-angiogenic role of VEGFA gene in porcine luteal cells: a preliminary report.
Mol Biol Rep
; 51(1): 195, 2024 Jan 25.
Article
em En
| MEDLINE
| ID: mdl-38270707
ABSTRACT
BACKGROUND:
The angiogenic cytokine vascular endothelial growth factor A (VEGFA) also exerts non-angiogenic effects on endocrine functionality of porcine luteal cells critical for progesterone (P4) production. METHOD ANDRESULTS:
The expression dynamics of VEGFA-FLT/KDR system were investigated using RT-qPCR during luteal stages and VEGFA gene knock out (KO) porcine luteal cells were generated using CRISPR/Cas9 technology. The downstream effects of VEGFA ablation were studied using RT-qPCR, Annexin V, MTT, ELISA for P4 estimation and scratch wound assay. Bioinformatics analysis of RNA-Seq data of porcine mid-luteal stage was conducted for exploring protein-protein interaction network, KEGG pathways, transcription factors and kinase mapping for VEGFA-FLT/KDR interactomes. The VEGFA-FLT/KDR system expressed throughout the luteal stages with highest expression during mid- luteal stage. Cellular morphology, structure and oil-red-o staining for lipid droplets did not differ significantly between VEGFA KO and wild type cells, however, VEGFA KO significantly decreased (p < 0.05) viability and proliferation efficiency of edited cells on subsequent passages. Expression of apoptotic gene, CASP3 and hypoxia related gene, HIF1A were significantly (p < 0.05) upregulated in KO cells. The relative mRNA expression of VEGFA and steroidogenic genes STAR, CYP11A1 and HSD3B1 decreased significantly (p < 0.05) upon KO, which was further validated by the significant (p < 0.05) decrease in P4 output from KO cells. Bioinformatics analysis mapped VEGFA-FLT/KDR system to signalling pathways associated with steroidogenic cell functionality and survival, which complemented the findings of the study.CONCLUSION:
The ablation of VEGFA gene resulted in decreased steroidogenic capability of luteal cells, which suggests that VEGFA exerts additional non-angiogenic regulatory effects in luteal cell functionality.Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Sistemas CRISPR-Cas
/
Células Lúteas
Limite:
Animals
Idioma:
En
Revista:
Mol Biol Rep
Ano de publicação:
2024
Tipo de documento:
Article