Your browser doesn't support javascript.
loading
LRP11 promotes stem-like T cells via MAPK13-mediated TCF1 phosphorylation, enhancing anti-PD1 immunotherapy.
Sun, Lingjuan; Ma, Zhibo; Zhao, Xiangli; Tan, Xiaosheng; Tu, Yuhao; Wang, Jingzeng; Chen, Li; Chen, Zhishui; Chen, Gang; Lan, Peixiang.
Afiliação
  • Sun L; Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and T
  • Ma Z; Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and T
  • Zhao X; Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and T
  • Tan X; Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and T
  • Tu Y; Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and T
  • Wang J; Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and T
  • Chen L; Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and T
  • Chen Z; Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and T
  • Chen G; Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and T
  • Lan P; Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and T
J Immunother Cancer ; 12(1)2024 01 25.
Article em En | MEDLINE | ID: mdl-38272565
ABSTRACT

BACKGROUND:

Tumor-infiltrating T cells enter an exhausted or dysfunctional state, which limits antitumor immunity. Among exhausted T cells, a subset of cells with features of progenitor or stem-like cells has been identified as TCF1+ CD8+ T cells that respond to immunotherapy. In contrast to the finding that TCF1 controls epigenetic and transcriptional reprogramming in tumor-infiltrating stem-like T cells, little is known about the regulation of TCF1. Emerging data show that elevated body mass index is associated with outcomes of immunotherapy. However, the mechanism has not been clarified.

METHODS:

We investigated the proliferation of splenic lymphocytes or CD8+ T cells induced by CD3/CD28 stimulation in vitro. We evaluated the effects of low-density lipoprotein (LDL) and LRP11 inhibitors, as well as MAPK13 inhibitors. Additionally, we used shRNA technology to validate the roles of LRP11 and MAPK13. In an in vivo setting, we employed male C57BL/6J injected with B16 cells or MC38 cells to build a tumor model to assess the effects of LDL and LRP11 inhibitors, LRP11 activators, MAPK13 inhibitors on tumor growth. Flow cytometry was used to measure cell proportions and activation status. Molecular interactions and TCF1 status were examined using Western blotting. Moreover, we employed RNA sequencing to investigate the effects of LDL stimulation and MAPK13 inhibition in CD8+ T cells.

RESULTS:

By using a tumor-bearing mouse model, we found that LDL-induced tumor-infiltrating TCF1+PD1+CD8+ T cells. Using a cell-based chimeric receptor screening system, we showed that LRP11 interacted with LDL and activated TCF1. LRP11 activation enhanced TCF1+PD1+CD8+ T-cell-mediated antitumor immunity, consistent with LRP11 blocking impaired T-cell function. Mechanistically, LRP11 activation induces MAPK13 activation. Then, MAPK13 phosphorylates TCF1, leading to increase of stem-like T cells.

CONCLUSIONS:

LRP11-MAPK13-TCF1 enhanced antitumor immunity and induced tumor-infiltrating stem-like T cells.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Melanoma Experimental / Linfócitos T CD8-Positivos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Immunother Cancer Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Melanoma Experimental / Linfócitos T CD8-Positivos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Immunother Cancer Ano de publicação: 2024 Tipo de documento: Article