Your browser doesn't support javascript.
loading
Human-specific epigenomic states in spermatogenesis.
Liao, Caiyun; Walters, Benjamin William; DiStasio, Marcello; Lesch, Bluma J.
Afiliação
  • Liao C; Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA.
  • Walters BW; Department of Genetics, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA.
  • DiStasio M; Department of Pathology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA.
  • Lesch BJ; Department of Opthamology & Visual Sciences, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA.
Comput Struct Biotechnol J ; 23: 577-588, 2024 Dec.
Article em En | MEDLINE | ID: mdl-38274996
ABSTRACT
Infertility is becoming increasingly common, affecting one in six people globally. Half of these cases can be attributed to male factors, many driven by abnormalities in the process of sperm development. Emerging evidence from genome-wide association studies, genetic screening of patient cohorts, and animal models highlights an important genetic contribution to spermatogenic defects, but comprehensive identification and characterization of the genes critical for male fertility remain lacking. High divergence of gene regulation in spermatogenic cells across species poses challenges for delineating the genetic pathways required for human spermatogenesis using common model organisms. In this study, we leveraged post-translational histone modification and gene transcription data for 15,491 genes in four mammalian species (human, rhesus macaque, mouse, and opossum), to identify human-specific patterns of gene regulation during spermatogenesis. We combined H3K27me3 ChIP-seq, H3K4me3 ChIP-seq, and RNA-seq data to define epigenetic states for each gene at two stages of spermatogenesis, pachytene spermatocytes and round spermatids, in each species. We identified 239 genes that are uniquely active, poised, or dynamically regulated in human spermatogenic cells distinct from the other three species. While some of these genes have been implicated in reproductive functions, many more have not yet been associated with human infertility and may be candidates for further molecular and epidemiologic studies. Our analysis offers an example of the opportunities provided by evolutionary and epigenomic data for broadly screening candidate genes implicated in reproduction, which might lead to discoveries of novel genetic targets for diagnosis and management of male infertility and male contraception.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Comput Struct Biotechnol J Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Comput Struct Biotechnol J Ano de publicação: 2024 Tipo de documento: Article