Nisin Purification from a Cell-Free Supernatant by Electrodialysis in a Circular Economy Framework.
Membranes (Basel)
; 14(1)2023 Dec 21.
Article
em En
| MEDLINE
| ID: mdl-38276315
ABSTRACT
Nisin, an antimicrobial peptide produced by Lactococcus lactis strains, is a promising natural preservative for the food industry and an alternative to antibiotics for the pharmaceutical industry against Gram-positive bacteria. Nisin purification is commonly performed using salting out and chromatographic techniques, which are characterized by their low yields, the use of solvents and the production of large volumes of effluents. In the present work, the purification of nisin from a cell-free supernatant (CFS), after the production of nisin by fermentation on a whey permeate medium, was studied using ammonium sulfate precipitation and electrodialysis (ED) as a promising eco-friendly process for nisin purification. Results showed an increase in nisin precipitation using a 40% ammonium sulfate saturation (ASS) level with a purification fold of 73.8 compared with 34.5 and no purification fold for a 60% and 20% ASS level, respectively. The results regarding nisin purification using ED showed an increase in nisin purification and concentration fold, respectively, of 21.8 and 156 when comparing the final product to the initial CFS. Nisin-specific activity increased from 75.9 ± 4.4 to 1652.7 ± 236.8 AU/mg of protein. These results demonstrated the effectiveness of ED coupled with salting out for nisin purification compared with common techniques. Furthermore, the process was noteworthy for its relevance in a circular economy scheme, as it does not require any solvents and avoids generating polluting effluents. It can be employed for the purification of nisin and the recovery of salts from salting out, facilitating their reuse in a circular economy.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Health_economic_evaluation
Idioma:
En
Revista:
Membranes (Basel)
Ano de publicação:
2023
Tipo de documento:
Article