Your browser doesn't support javascript.
loading
Integration of network pharmacology with experimental validation to reveal the mechanism of action of Longdan Xiegan Decoction against HSV2 infection and determine its effective components.
Li, Yuyun; Li, Siyan; Shou, Zeren; Li, Yibin; Li, Axin; Liu, Wenli; Zhang, Xin; Zhou, Chengliang; Xu, Daohua; Li, Lin.
Afiliação
  • Li Y; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Key Laboratory of Traditional Chinese Medicine and New Pharmacy Development, Guangd
  • Li S; Department of Rehabilitation Medicine, Guangzhou Xinhua University, Guangzhou, 510520, China; School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
  • Shou Z; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
  • Li Y; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
  • Li A; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
  • Liu W; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
  • Zhang X; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
  • Zhou C; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
  • Xu D; Key Laboratory of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, 523808, China. Electronic address: daohuaxu@gdmu.edu.cn.
  • Li L; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China. Electronic address: li75lin@smu.edu.cn.
J Ethnopharmacol ; 325: 117861, 2024 May 10.
Article em En | MEDLINE | ID: mdl-38316223
ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM) has made enormous strides recently in the discovery of anti-herpes simplex virus (HSV) drugs under the guidance of TCM theory. Longdan Xiegan Decoction (LXD), a formulation recorded in the Pharmacopoeia of the People's Republic of China, has proved to be effective against HSV infection. However, its effective components and action mechanism remain unclear. AIM OF THE STUDY To investigate the effective components and mechanisms of LXD in treating HSV infection based on network pharmacology and experimental validation. MATERIALS AND

METHODS:

The anti-HSV activities of key compounds predicted by network analysis were detected by antiviral tests. High-performance liquid chromatography (HPLC) was applied to identify the main components of the LXD aqueous extract. Time-of-addition assay and infectivity inhibition reversibility assay were conducted to identify the potential antiviral mechanisms of licochalcone B (LCB). Additionally, we assessed the antiviral effect of LCB in vivo by use of body weight, viral load, histological analysis, and scoring of genital lesions in an HSV2-infected mouse model.

RESULTS:

Our data demonstrated that some components exhibited significant anti-HSV1/2 activity in vitro, including quercetin, kaempferol, wogonin, formononetin, naringenin, baicalein, isorhamnetin, glabridin, licochalcone A, echinatin, oroxylin A, isoliquiritigenin, pinocembrin, LCB and acacetin. HPLC analysis showed that LCB was the main component of LXD aqueous extract. In vitro experiments revealed that LCB not only inactivated HSV2 particles, but also inhibited HSV2 multiplication through the inhibition of the phosphorylation of Akt and its downstream targets. In vivo experiments confirmed that LCB could significantly reduce viral titer, delay weight loss, and alleviate pathological changes in vaginal tissue in vaginal infection mouse models.

CONCLUSION:

LCB acted as the main component of LXD, with significant anti-HSV2 infection effects both in vivo and in vitro. This study provides additional evidence of the healing efficacy of LXD against HSV infection and presents an efficient analytical method for further investigation of the mechanisms of TCM in prevention and treatment of various diseases.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Medicamentos de Ervas Chinesas / Chalconas / Herpes Simples Tipo de estudo: Guideline / Prognostic_studies Limite: Animals / Female / Humans Idioma: En Revista: J Ethnopharmacol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Medicamentos de Ervas Chinesas / Chalconas / Herpes Simples Tipo de estudo: Guideline / Prognostic_studies Limite: Animals / Female / Humans Idioma: En Revista: J Ethnopharmacol Ano de publicação: 2024 Tipo de documento: Article