Your browser doesn't support javascript.
loading
Small-Molecule Copper Chloride Modulating the Buried Interfaces of Perovskite Solar Cells.
Chen, Qi; Wu, Jihuai; Liu, Xuping; Du, Yitian; Deng, Chunyan; Chen, Xia; Sun, Liuxue; Tan, Lina; Sun, Weihai; Lan, Zhang.
Afiliação
  • Chen Q; Engineering Research Center of Environmental Friendly Function Materials, Ministry of Education, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
  • Wu J; Materials Science and Engineering College, Huaqiao University, Xiamen 361011, China.
  • Liu X; Engineering Research Center of Environmental Friendly Function Materials, Ministry of Education, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
  • Du Y; Materials Science and Engineering College, Huaqiao University, Xiamen 361011, China.
  • Deng C; Lingnan Normal University, Zhanjiang 524048, China.
  • Chen X; Engineering Research Center of Environmental Friendly Function Materials, Ministry of Education, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
  • Sun L; Materials Science and Engineering College, Huaqiao University, Xiamen 361011, China.
  • Tan L; Engineering Research Center of Environmental Friendly Function Materials, Ministry of Education, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
  • Sun W; Materials Science and Engineering College, Huaqiao University, Xiamen 361011, China.
  • Lan Z; Engineering Research Center of Environmental Friendly Function Materials, Ministry of Education, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
ACS Appl Mater Interfaces ; 16(7): 8949-8959, 2024 Feb 21.
Article em En | MEDLINE | ID: mdl-38329719
ABSTRACT
In perovskite solar cells (PSCs), tin dioxide (SnO2) is a highly effective electron transport material. On the other hand, the low intrinsic conductivity of SnO2, the high trap-state density on the surface and bulk of SnO2, and inadequate interface contacts between SnO2 and perovskite significantly impact device performance. Herein, small-molecule copper(II) chloride (CuCl2) is introduced into the SnO2 dispersion, which inhibits the agglomeration of SnO2 colloids and improves the quality of the electron transport layer. Furthermore, the introduction of CuCl2 optimizes the energy-level array between the ETL and perovskite layer (PVK) and passivates the anion/cation defects in SnO2, perovskite, and their interface, realizing the systematic modulation of the photoelectronic properties of the ETLs and PVKs as well as the PVK/ETL. As a result, the CuCl2-opmized PSC exhibits an impressive power conversion efficiency of 23.71%, along with improved stability.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2024 Tipo de documento: Article