Your browser doesn't support javascript.
loading
Breaking Low-Strain and Deep-Potassiation Trade-Off in Alloy Anodes via Bonding Modulation for High-Performance K-Ion Batteries.
Zhou, En; Luo, Xiao; Jin, Hongchang; Wang, Chaonan; Lu, Zhiyu; Xie, Yuansen; Zhou, Shaoyun; Chen, Yawei; He, Zixu; Ma, Ruoxuan; Zhang, Wei; Xie, Huanyu; Jiao, Shuhong; Lin, Yue; Bin, De-Shan; Huang, Rong; Wu, Xiaojun; Kong, Xianghua; Ji, Hengxing.
Afiliação
  • Zhou E; Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
  • Luo X; Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
  • Jin H; Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
  • Wang C; Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
  • Lu Z; Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
  • Xie Y; Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
  • Zhou S; Ningde Amperex Technology Limited (ATL), Ningde 352100, China.
  • Chen Y; Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
  • He Z; Ningde Amperex Technology Limited (ATL), Ningde 352100, China.
  • Ma R; Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
  • Zhang W; Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
  • Xie H; Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Jiao S; Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.
  • Lin Y; Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
  • Bin DS; Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
  • Huang R; Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
  • Wu X; College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
  • Kong X; Vacuum Interconnected Nanotech Workstation (NANO-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Suzhou 215123, China.
  • Ji H; Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
J Am Chem Soc ; 146(7): 4752-4761, 2024 Feb 21.
Article em En | MEDLINE | ID: mdl-38334447
ABSTRACT
Alloy anode materials have garnered unprecedented attention for potassium storage due to their high theoretical capacity. However, the substantial structural strain associated with deep potassiation results in serious electrode fragmentation and inadequate K-alloying reactions. Effectively reconciling the trade-off between low-strain and deep-potassiation in alloy anodes poses a considerable challenge due to the larger size of K-ions compared to Li/Na-ions. In this study, we propose a chemical bonding modulation strategy through single-atom modification to address the volume expansion of alloy anodes during potassiation. Using black phosphorus (BP) as a representative and generalizing to other alloy anodes, we established a robust P-S covalent bonding network via sulfur doping. This network exhibits sustained stability across discharge-charge cycles, elevating the modulus of K-P compounds by 74%, effectively withstanding the high strain induced by the potassiation process. Additionally, the bonding modulation reduces the formation energies of potassium phosphides, facilitating a deeper potassiation of the BP anode. As a result, the modified BP anode exhibits a high reversible capacity and extended operational lifespan, coupled with a high areal capacity. This work introduces a new perspective on overcoming the trade-off between low-strain and deep-potassiation in alloy anodes for the development of high-energy and stable potassium-ion batteries.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2024 Tipo de documento: Article