Your browser doesn't support javascript.
loading
Electronic Structure Regulated Nickel-Cobalt Bimetal Phosphide Nanoneedles for Efficient Overall Water Splitting.
Xu, Heyang; She, Xilin; Li, Haolin; Wang, Chuanhui; Chen, Shuai; Diao, Lipeng; Lu, Ping; Li, Longwei; Tan, Liwen; Sun, Jin; Zou, Yihui.
Afiliação
  • Xu H; State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
  • She X; State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
  • Li H; State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
  • Wang C; State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
  • Chen S; State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
  • Diao L; Qingdao Hanxing New Materials Co., Ltd., Qingdao 266109, China.
  • Lu P; School of Material Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
  • Li L; State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
  • Tan L; State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
  • Sun J; State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
  • Zou Y; State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
Molecules ; 29(3)2024 Jan 31.
Article em En | MEDLINE | ID: mdl-38338401
ABSTRACT
Transition metal phosphides (TMPs) have been widely studied for water decomposition for their monocatalytic property for anodic or cathodic reactions. However, their bifunctional catalytic activity still remains a major challenge. Herein, hexagonal nickel-cobalt bimetallic phosphide nanoneedles with 1-3 µm length and 15-30 nm diameter supported on NF (NixCo2-xP NDs/NF) with adjusted electron structure have been successfully prepared. The overall alkaline water electrolyzer composed of the optimal anode (Ni0.67Co1.33P NDs/NF) and cathode (Ni1.01Co0.99P NDs/NF) provide 100 mA cm-2 at 1.62 V. Gibbs Free Energy for reaction paths proves that the active site in the hydrogen evolution reaction (HER) is Ni and the oxygen evolution reaction (OER) is Co in NixCo2-xP, respectively. In the HER process, Co-doping can result in an apparent accumulation of charge around Ni active sites in favor of promoting HER activity of Ni sites, and ΔGH* of 0.19 eV is achieved. In the OER process, the abundant electron transfer around Co-active sites results in the excellent ability to adsorb and desorb *O and *OOH intermediates and an effectively reduced ∆GRDS of 0.37 eV. This research explains the regulation of electronic structure change on the active sites of bimetallic materials and provides an effective way to design a stable and effective electrocatalytic decomposition of alkaline water.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Molecules Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Molecules Ano de publicação: 2024 Tipo de documento: Article