Your browser doesn't support javascript.
loading
Biodegradable reactive compatibilizers for efficient in-situ compatibilization of poly (lactic acid)/poly (butylene adipate-terephthalate) blends.
Guan, Jieyu; Zhang, Ce; Xu, Pengwu; Niu, Deyu; Yang, Weijun; Zhang, Xu; Liu, Tianxi; Ma, Piming.
Afiliação
  • Guan J; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
  • Zhang C; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
  • Xu P; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. Electronic address: pengwuxu@jiangnan.edu.
  • Niu D; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
  • Yang W; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
  • Zhang X; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
  • Liu T; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
  • Ma P; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. Electronic address: p.ma@jiangnan.edu.cn.
Int J Biol Macromol ; 262(Pt 1): 130029, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38340935
ABSTRACT
The wide application of fully biodegradable polylactic acid/polybutylene terephthalate (PLA/PBAT) blends in environmentally friendly packaging were limited because of poor compatibility. Normal compatibilizers suffer from poor thermal stability and non-biodegradability. In this work, epoxy copolymer (MDOG) with different molecular structures were made of 2-methylene-1, 3-dioxoheptane, and glycidyl methacrylate as raw materials by free radical copolymerization. MDOG copolymers have good biodegradability and a high thermal decomposition temperature of 361 °C. The chemical reaction of the epoxy groups in MDOG with PLA and PBAT during the melting reaction improved the interfacial bonding by decreasing the particle size of PBAT. Compared to the PLA/PBAT blends, the tensile strength and fracture toughness of PLA/PBAT/MDOG blends were enhanced to 34.6 MPa and 115.8 MJ/m3, which are 25 % and 81 % higher, respectively. As a result, this work offers new methods for developing thermally stable and biodegradable compatibilizers, which will hopefully promote the development of packaging industry.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácidos Ftálicos / Poliésteres / Adipatos / Alcenos Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácidos Ftálicos / Poliésteres / Adipatos / Alcenos Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article