Your browser doesn't support javascript.
loading
popDMS infers mutation effects from deep mutational scanning data.
Hong, Zhenchen; Barton, John P.
Afiliação
  • Hong Z; Department of Physics and Astronomy, University of California, Riverside, USA.
  • Barton JP; Department of Physics and Astronomy, University of California, Riverside, USA.
bioRxiv ; 2024 Jan 31.
Article em En | MEDLINE | ID: mdl-38352383
ABSTRACT
Deep mutational scanning (DMS) experiments provide a powerful method to measure the functional effects of genetic mutations at massive scales. However, the data generated from these experiments can be difficult to analyze, with significant variation between experimental replicates. To overcome this challenge, we developed popDMS, a computational method based on population genetics theory, to infer the functional effects of mutations from DMS data. Through extensive tests, we found that the functional effects of single mutations and epistasis inferred by popDMS are highly consistent across replicates, comparing favorably with existing methods. Our approach is flexible and can be widely applied to DMS data that includes multiple time points, multiple replicates, and different experimental conditions.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2024 Tipo de documento: Article