Your browser doesn't support javascript.
loading
Designing 3D multicomponent self-assembling systems with signal-passing building blocks.
Evans, Joshua; Sulc, Petr.
Afiliação
  • Evans J; School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, USA.
  • Sulc P; School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, USA.
J Chem Phys ; 160(8)2024 Feb 28.
Article em En | MEDLINE | ID: mdl-38385517
ABSTRACT
We introduce an allostery-mimetic building block model for the self-assembly of 3D structures. We represent the building blocks as patchy particles, where each binding site (patch) can be irreversibly activated or deactivated by binding of the particle's other controlling patches to another particle. We show that these allostery-mimetic systems can be designed to increase yields of target structures by disallowing misassembled states and can further decrease the smallest number of distinct species needed to assemble a target structure. Next, we show applications to design a programmable nanoparticle swarm for multifarious assembly a system of particles that stores multiple possible target structures and a particular structure is recalled by presenting an external trigger signal. Finally, we outline a possible pathway for realization of such structures at nanoscale using DNA nanotechnology devices.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2024 Tipo de documento: Article