Your browser doesn't support javascript.
loading
Ligand-Induced Synthesis of Highly Stable NM88(DB)@COF-JLU19 Composite: Accelerating Electron Flow for Visible-Light-Efficient Degradation of Tetracycline Hydrochloride.
Zhao, Jinxia; Liu, Jingchao; Li, Zenghe; Yin, Yilin.
Afiliação
  • Zhao J; College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
  • Liu J; College of Computer Science and Engineering, Beihang University, Beijing 100191, China.
  • Li Z; College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
  • Yin Y; College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
Polymers (Basel) ; 16(4)2024 Feb 17.
Article em En | MEDLINE | ID: mdl-38399917
ABSTRACT
In recent years, the response of new porous materials to visible light and their potential applications in wastewater treatment has received extensive attention from the scientific community. Metal Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) have been the focus of attention due to their strong visible light absorption, high specific surface area, well-regulated pore structures, and diverse topologies. In this study, a novel MOF@COF composite with a high surface area, high crystallinity, and structural stability was obtained using the covalent bond formation strategy from COF-JLU19 and NH2-MIL-88B(Fe). Under visible light irradiation, the degradation of tetracycline hydrochloride by this material reached more than 90% within 10 min and was completely degraded within 30 min, which exceeded the degradation rate of individual materials. Remarkably, the catalytic activity decreased by less than 5% even after five degradation cycles, indicating good structural stability. The excellent photocatalytic performance of the NM88(DB)@COF-JLU19 hybrids was attributed to the formation of covalent bonds, which formed a non-homogeneous interface that facilitated effective charge separation and promoted the generation of hydroxyl radicals.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Polymers (Basel) Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Polymers (Basel) Ano de publicação: 2024 Tipo de documento: Article